
Trigonometric Tangent Interpolating Curves
Andriamahenina Ramanantoanina · Kai Hormann

Abstract
Due to their favourable properties, cubic B-spline curves are the de facto standard for modelling
closed curves in computer graphics and computer-aided design. Their shapes can be modified
intuitively by moving the vertices of a control polygon, but they are only twice differentiable at
the knots. Even though this is sufficient for most applications, curves with higher smoothness
are still of valuable interest. For example, periodic Bézier curves provide an alternative for
designing closed curves as C∞ smooth trigonometric polynomials, but their shapes are not as
intuitive to control, because of the global influence of each control point. The same space of
curves can also be described in vertex interpolating form, but this may result in other shape
artefacts. In this paper we introduce two new representations of trigonometric polynomial
curves that are inspired by the idea behind polynomial Gauss–Legendre curves and likewise use
the control polygon for controlling the tangents of the curves. The first variant gives curves
that closely follow the control polygon, and the curves generated with the second variant are
less tied to the control polygon and instead very similar to uniform cubic B-spline curves.

Citation info
Conference : Pacific Graphics 2024
Publisher : The Eurographics Association
DOI : 10.2312/pg.20241297

(a) (b) (c) (d) (e) (f)

Figure 1: Comparison of curves defined by a common closed control polygon (a): while periodic
Bézier curves suffer from shrinking as the number of control points increases (b), trigonometric
vertex interpolating curves tend to have shape artefacts in the presence of control edges with
non-uniform length. Our new trigonometric tangent interpolating curves (of type 1) are always
close to the control polygon (d), at the expense of not necessarily being inside the convex hull.
We further introduce a variant of these curves which behaves better in that respect. These
type-2 curves (e) are very similar to uniform cubic B-spline curves (f).

1. Introduction

A trigonometric polynomial of degree N is a function

P (t) = a0 +
N∑
k=1

(
ak cos(kt) + bk sin(kt)

)
with coefficients a0, . . . , aN , b1, . . . , bN . Clearly, P is C∞ smooth and periodic in t over [0, 2π].

1

https://doi.org/10.2312/pg.20241297

Trigonometric Tangent Interpolating Curves

In this paper we focus on the case where the coefficients are points in R2, so that P (t) for
t ∈ [0, 2π] describes a closed curve. For example, if N = 1, then P (t) is an ellipse, and the
coefficients a0, a1, b1 encode its centre and the direction of its principal axes. However, for a
complex shape, this formulation does not provide much geometric information about the curve,
and it is preferable to express P (t) in a different basis.

One option is to let n = 2N and to consider as basis functions the n + 1 uniformly shifted
versions of

Bn
0 (t) =

2n

n+ 1

(
n
N

)−1

cosn
t

2
,

that is,
Bn

i (t) = Bn
0 (t− ϕi), i = 0, . . . , n, (1)

where ϕi = 2iπ/(n+ 1), and to write P (t) as

P (t) =
n∑

i=0

Bn
i (t)pi

for certain control points p0, . . . , pn ∈ R2. Curves given in this form are called periodic Bézier
curves [Róth et al., 2009; Sánchez-Reyes, 2009], since they share some key properties with
polynomial Bézier curves. In particular, the curve P (t) is contained in the convex hull of its
control points and its shape roughly imitates the shape of the control polygon.

The functions Bn
i in (1) are designed to be somewhat similar to the Bernstein polynomials,

which are used for expressing classical Bézier curves. They are non-negative, linearly indepen-
dent, and form a partition of unity. Moreover, they are bell-shaped and have a contact of order
N with the x-axis (see Figure 3). Consequently, designing a periodic Bézier curve is similar to
modelling polynomial Bézier curves and very intuitive, especially for low-degree curves. How-
ever, as n grows, these basis functions become more and more global and cause the curve to
increasingly deviate from the shape of its control polygon, thus smoothing out its details (see
Figure 1b).

Another option is to use Gauss’s formula for trigonometric interpolation [Gauss, 1866] and
express P (t) in interpolating form as

P (t) =
n∑

i=0

ℓni (t)pi,

where

ℓni (t) =
n∏

j=0,j ̸=i

sin
t−tj
2

sin
ti−tj
2

(2)

are the trigonometric Lagrange basis functions with respect to the nodes t0, . . . , tn [Salzer, 1948].
Like in the polynomial case, the functions ℓni satisfy the Lagrange property ℓi(tj) = δi,j, which
guarantees the interpolation property, namely P (ti) = pi (see Figure 1c). In the special case
of equidistant nodes, ti = ϕi, one can further express the curve in trigonometric barycentric
form [Berrut, 1984], which allows for a very efficient evaluation of P (t). However, due to the
oscillatory nature of this basis (see Figure 3), this representation is suitable only for small
displacements of the control points pi [Ramanantoanina and Hormann, 2023].

1.1 Contributions

In this paper, we explore two novel alternative representations of trigonometric curves, both
based on the interpolation of tangents instead of points (Section 3). The first construction gives

2

Trigonometric Tangent Interpolating Curves

curves that are very tight to the control polygon (see Figure 1d). The second construction is a
minor variation of the first, but turns out to give curves (see Figure 1e) that are very similar to
cubic B-spline curves (see Figure 1f), which are the de facto standard for closed curve design.
The main advantage of both representations is that they provide more intuitive control over
the shape of the curve, compared to the two existing approaches for modelling trigonometric
curves.

After deriving our trigonometric tangent interpolating curves and reporting their basic
properties (Section 3), we discuss some practical aspects of using them for curve modelling
(Section 4) and point out advantages and limitations (Section 5).

2. Preliminaries

Before starting the construction, let us recall some trigonometric identities that we use fre-
quently throughout this manuscript:

cos(α− β) = cosα cos β + sinα sin β, (3)

sinα− sin β = 2 cos
α + β

2
sin

α− β

2
, (4)

cos2m t =
1

22m

(
2m
m

)
+

1

22m−1

m−1∑
i=0

(
2m
i

)
cos

(
2(m− i)t

)
. (5)

We further introduce the vector

cn(t) =
(
1, cos t, sin t, . . . , cos(Nt), sin(Nt)

)T ∈ Rn+1,

of trigonometric monomials and the matrix

Cn,m =
(
cn(ϕ0), . . . , cn(ϕm)

)T ∈ R(m+1)×(n+1).

3. Trigonometric tangent interpolating curves

Suppose we are given a control polygon with n+ 1 control points p0, . . . , pn, where n = 2N for
some N ∈ N. Our aim is to create two families of curves Pd for d = 1, 2, given by trigonometric
polynomials in different bases that we denote by Ld

i (t), i = 0, . . . , n.
The first family (d = 1) is inspired by the construction of polynomial Gauss–Legendre

curves [Moon et al., 2023]. The trigonometric analogue of that approach is the trigonometric
polynomial curve P1 of degree N whose derivative at the dual uniformly distributed nodes is
parallel to the edge vectors ∆i = pi+1 − pi (see Figure 2, top), that is,

P ′
1(ψi) = ωi∆i, i = 0, . . . , n, (6)

with ψi = (2i+ 1)π/(n+ 1), where pn+1 = p0 and ω0, . . . , ωn are certain weights, whose values
will be determined below. We call this curve a trigonometric tangent interpolating curve of
type 1.

While the constraints in (6) are associated with the edge midpoints of the control polygon,
we further propose a variant where the constraints are associated with the control points instead.
To this end, we simply average two successive edge vectors and define the trigonometric tangent
interpolating curve of type 2 to be the trigonometric polynomial P2 whose derivative at the
primal uniformly distributed nodes is parallel to these averages (see Figure 2, bottom), that is,

P ′
2(ϕi) = ωi

∆i−1 + ∆i

2
, i = 0, . . . , n, (7)

3

Trigonometric Tangent Interpolating Curves

Figure 2: Tangent interpolation conditions (9) for n = 6 at the highlighted points Pd(ti) for
type-1 curves (top) and type-2 curves (bottom).

where p−1 = pn and pn+1 = p0.
In order to derive the appropriate basis functions Ld

i that allow us to express the type-1
curve P1 and the type-2 curve P2 in terms of the control points pi as

Pd(t) =
n∑

i=0

Ld
i (t)pi, (8)

note that we can write the interpolation conditions in (6) and (7) conveniently in a common
form as

P ′
d(ti) = ωi

pi+1 − pi+1−d

d
, i = 0, . . . , n, (9)

for d ∈ {1, 2}, where ti = (2 + 2i− d)π/(n+ 1).
For the rest of the manuscript, we assume (ϕi)i=0,...,n to be the uniformly distributed nodes

ϕi = 2iπ/(n+ 1) and (ti)i=0,...,n to be a shifted version ti = ϕi − ϕd/2 for i = 0, . . . , n. We start
the construction of Ld

i by recalling that P ′
d(t) is a trigonometric polynomial of degree N (with

vanishing constant coefficient) and can hence be expressed, using the tangent interpolation
conditions (9) and the basis functions in (2), as

P ′
d(t) =

n∑
i=0

ℓni (t)ωi
pi+1 − pi+1−d

d
. (10)

Integrating both sides of (10), we get Pd as in (8) with basis functions

Ld
i (t) =

1

d

(
ωi−1Ii−1(t) − ωi−1+dIi−1+d(t)

)
(11)

4

Trigonometric Tangent Interpolating Curves

for i = 0, . . . , n, where

Ii(t) =

∫ t

ti

ℓni (x) dx (12)

and ℓn−1 = ℓnn, ℓnn+1 = ℓn0 and ω−1 = ωn, ωn+1 = ω0.
To get an explicit expression for Ld

i (t), we recall that the nodes ti are uniformly spaced with
ti = t0 + ϕi. Therefore, ℓni in (2) becomes

ℓni (t) = K(t− ti), (13)

where

K(t) =
1

n+ 1

N∑
k=−N

eikt =
1

n+ 1

(
1 + 2

N∑
k=1

cos(kt)

)
.

Indeed, since eiϕj is an (n+ 1)-th root of unity, we find that

K(ϕj) =
1

n+ 1

N∑
k=−N

eikϕj =
1

n+ 1

ei(n+1)ϕj − 1

eiϕj − 1
= δ0,j

and
K(tj − ti) = K(ϕj − ϕi) = K(ϕj−i) = δ0,j−i = δi,j

Therefore, since ℓni (t) and K(t − ti) are both trigonometric polynomials of degree N , which
agree at the 2N+1 knots t0, . . . , tn, they must be identical [Powell, 1981]. We can now use (13)
to write Ii(t) in (12) as

Ii(t) =

∫ t−ti

0

K(x) dx =
1

n+ 1

(
t− ti +

N∑
k=1

2

k
sin

(
k(t− ti)

))
, (14)

which in turn can be used in (11) to get an explicit formula for Ld
i .

3.1 Partition of unity

We shall now choose the weights ωi such that the basis functions Ld
0, . . . , L

d
n form a partition of

unity. Due to the uniformity of the nodes ti, the only choice that gives the expected symmetry
is to set all nodes to a common value ω = ω0 = · · · = ωn. It then follows from (11) and (14)
that

Ld
i (t) =

ω

d

(
Ii−1(t) − Ii−1+d(t)

)
=

ω

d(n+ 1)

(
ϕd +

N∑
k=1

2

k

[
sin

(
k(t− ti−1)

)
− sin

(
k(t− ti−1+d)

)]) (15)

and consequently
n∑

i=0

Ld
i (t) =

ω

d
ϕd = ω

2π

n+ 1
.

Now it is clear that the basis functions form a partition of unity, if and only if ω = (n+1)/(2π).
Inserting this value into (15) and using (4), we can finally simplify the formula for Ld

i to

Ld
i (t) =

1

n+ 1
+

2

dπ

N∑
k=1

1

k
cos

(
k(t− ϕi)

)
sin

kϕd

2
. (16)

5

Trigonometric Tangent Interpolating Curves

0.0

0.5

1.0
B

n i
(t
)

−1

0

1

−1

0

0.0

0.5

1.0

ℓn i
(t
)

−2.5

0.0

2.5

−20

0

0.0

0.5

1.0

L
1 i
(t
)

−2

0

2

−20

0

0.0

0.5

1.0

L
2 i
(t
)

−2

0

2

−5

0

0 2π

t

0.0

0.5

1.0

N
3 i
(t
)

0 2π

−2

0

2

0 2π

−10

0

Figure 3: A comparison of the different basis functions considered in this paper (left column)
for n = 14 and the corresponding first derivatives (middle column) and second derivatives (right
column). From top to bottom: periodic Bézier, trigonometric Lagrange, trigonometric tangent
interpolating type-1 and type-2, and uniform cubic B-splines.

3.2 Linear independence

To prove the linear independence of the basis functions Ld
0, . . . , L

d
n, we recall that the trigono-

metric monomials, that is, the components of the vector cn(t), are clearly linearly independent.

Hence, it suffices to show that the vector Ld
n(t) =

(
Ld
0(t), . . . , L

d
n(t)

)T
can be expressed as

Ld
n(t) = Γn,dcn(t) for some non-singular matrix Γn,d.

To this end, we use (3) to expand Ld
i (t) in (16) into trigonometric polynomial form,

Ld
i (t) =

1

n+ 1
+

2

dπ

N∑
k=1

1

k
cos(kt) cos(kϕi) sin

kϕd

2

+
2

dπ

N∑
k=1

1

k
sin(kt) sin(kϕi) sin

kϕd

2
,

and conclude that
Ld
i (t) = cn(ϕi)

TDdcn(t),

where Dd is the diagonal matrix

Dd = diag(a0, a1, a1, . . . , aN , aN),

with entries

a0 =
1

n+ 1
, ai =

2

idπ
sin

iϕd

2
, i = 1, . . . , N.

6

Trigonometric Tangent Interpolating Curves

(a) (b) (c) (d) (e)

Figure 4: Effect of modifying a single control point for various curve types: periodic Bézier
curve (a), trigonometric vertex interpolating curve (b), trigonometric tangent interpolating
curve of type 1 (c) and type 2 (d), and cubic B-spline curve (e).

Consequently, Ld
n(t) = Γn,dcn(t), where

Γn,d = Cn,nDd,

and it remains to show that Γn,d is non-singular, which follows from two observations. On the
one hand, we note that sin iϕd

2
̸= 0 for i = 1, . . . , N . On the other hand, we recall that the

functions 1, cos t, sin t, . . . , cos(Nt), sin(Nt) form a Chebyshev system, that is, they are linearly
independent and no non-trivial linear combination of them admits more than n zeros in [0, 2π)
[Powell, 1981]. Therefore, Dd and Cn,n are both non-singular.

4. Practical aspects

4.1 Implementation

The implementation of our tangent interpolating curves is straightforward. Given some param-
eter t ∈ [0, 2π], we first evaluate each of the n+ 1 basis functions Ld

i in O(n) time, using (16),
and then compute the corresponding curve point Pd(t) using (8) in O(n) time. Hence, the
evaluation of a single point requires O(n2) time. However, if we render the whole curve with
mn equidistant samples (i.e., m samples per interval [ϕi, ϕi+1]), then we can exploit the fact
that the basis functions are identical up to uniform shifts and get by with evaluating just one
basis function at all sample points in O(mn2) time and then computing all mn curve points
as before, again in O(mn2) time. Overall, this amounts to an O(n) time complexity per curve
point. For example, our simple Python implementation handles degree n = 101 curves with
m = 10000 samples per interval in approximately 50 ms.

4.2 Curve manipulation

Since the basis functions of our type-1 and type-2 curves are neither non-negative nor non-
positive (see Figure 3), that is, they do not form a blending system [Carnicer, 1999], the curves
are not necessarily contained in the convex hull of the control points (see Figure 4c,d). In our
experiments, this usually happens when we have a double point, that is, pi = pi+1, or three
consecutive collinear points. In addition, since the nodes ψi and ϕi are distributed uniformly,
it is recommended to keep the lengths of the control edges more or less even, especially for our
type-1 curves. Figure 4 shows the change of the curve induced by the manipulation of a single
control point. These changes are always as intuitive as for cubic B-spline curves and stable in
the sense that a small displacement of the control point leads to a small deviation of the curve.
Sharp corners (more precisely, cusps) can be created by overlapping three or more consecutive
control points (see Figure 5). However, the cusp point does not coincide with the overlapping
control points, as it would in the case of a cubic B-spline.

7

Trigonometric Tangent Interpolating Curves

Figure 5: An example of a curve given by 11 points with sharp corners (top, bottom left, and
bottom right) created by overlapping three successive points with a zoomed-in view of the top
corner.

(a) (b) (c) (d) (e) (f) (g)

Figure 6: Set of all degree-elevated control polygons q (blue) for different choices of p0. In this
example, the optimization (17) picks the control polygon (e) as the preferred degree-elevated
control polygon, which is the one that keeps the reflection symmetry present in p (dashed).

4.3 Curve similarities

The examples in Figures 1, 4, and 8 show that our type-1 curves are quite similar to vertex
interpolating curves and that our type-2 curves are akin to uniform cubic B-spline curves. With
reference to Figure 3, this is not surprising, since the same similarity can be observed for the
respective basis functions and their first and second derivatives.

The similarity of our type-2 curves to uniform cubic B-spline curves actually goes beyond
mere visual inspection. On the one hand, both curves have tangents that are parallel to
pi+1 − pi−1 at the nodes ϕi, because the only non-vanishing basis functions at ϕi are those with
indices i−1 and i+1. On the other hand, in both cases the basis function with index i vanishes
at all nodes ϕj with indices j ̸= i− 1, i+ 1.

4.4 Degree elevation

Apart from moving the control points, a typical operation in curve modelling is refinement,
which increases the number of control points and thus enables a more detailed manipulation
of the curve shape. In the case of our type-1 and type-2 curves, this can be achieved by
degree elevation, which increases the number of control points by two. As for classical and
periodic Bézier curves, the new control points can be obtained from the old ones via matrix
multiplication.

To describe our refinement process, let m = n+ 2 and denote by p and q the (row) vectors
(p0, . . . , pn) and (q0, . . . , qm), respectively. Since Ld

i (t) = Γi,dci(t) for i = n,m, we can get the
degree-elevated control polygon q by solving the linear system

pΓn,dC
T
n,m = qΓm,dC

T
m,m

8

Trigonometric Tangent Interpolating Curves

or by computing q directly as q = pMn,m, where the matrix

Mn,m = Γn,dC
T
n,m

(
Γm,dC

T
m,m

)−1

can be precomputed.
Since we are in a cyclic setting and more focused on the shape rather than the parameteriza-

tion, we can shift the indices of the control points of p arbitrarily and let any pi take the role of
the starting point p0. Interestingly, each such shift leads to a different degree-elevated control
polygon q, but all n+ 1 variants define the same curve. Given this situation, one may wonder
which is the best choice? For example, if the original control polygon p has some symmetry,
we may prefer q to keep this symmetry.

We propose a simple method to automatically select a particular candidate by simply com-
puting all of them and picking the one that minimizes a cost function that measures a certain
distance between p and q. More precisely, we consider the difference between the variance of
the length of their edges. Recall [Hogg et al., 2019] that the variance of the edge lengths of p
is defined as

σ2(p) =
1

n+ 1

n∑
i=0

(
ei(p) − ē(p)

)2
,

where

ē(p) =
1

n+ 1

n∑
i=0

ei(p), ei(p) = ∥pi+1 − pi∥, i = 0, . . . , n,

and similarly for q. Among the n + 1 different degree-elevated control polygons, we then find
the one that minimizes

|σ2(p) − σ2(q)|. (17)

Figure 6 shows an example of this procedure.

4.5 Basis transformations

Each method for designing trigonometric curves (see Figure 4) has their particular advantages.
While our type-2 curves might be the preferred representation, since they allow shape control
that is very similar to the manipulation of cubic B-spline curves, our type-1 curves have the
advantage of tight edge control, the Lagrange basis offers direct vertex control, and the periodic
Bézier representation guarantees the convex hull property. Since all representations model the
same space of trigonometric polynomials, it is easy to convert between them and to switch from
one representation to another, a process also know as basis transformation (see Figure 7).

We first study the relation between the Bézier control polygon and the control polygon of
our type-1 and type-2 curves. Given a curve P (t) with control points p0, . . . , pn as in (8), we
would like to find the control points q0, . . . , qn, such that same curve can be expressed in Bézier
form as

P (t) =
n∑

i=0

Bn
i (t)qi.

9

Trigonometric Tangent Interpolating Curves

Bézier Lagrange d = 1 d = 2

Figure 7: Control polygons of the same trigonometric polynomial curve for different sets of
basis functions.

To this end, we express Bn
i (t) in trigonometric polynomial form,

Bn
i (t) =

2n

n+ 1

(
n
N

)−1

cosn
t− ϕi

2

(5)
=

1

n+ 1

(
n
N

)−1
[(

n
N

)
+ 2

N−1∑
k=0

(
n
k

)
cos[(N − k)(t− ϕi)]

]

=
1

n+ 1

(
n
N

)−1
[(

n
N

)
+ 2

N∑
k=1

(
n

N − k

)
cos[k(t− ϕi)]

]
(3)
=

1

n+ 1
+

2

n+ 1

(
n
N

)−1 N∑
k=1

(
n

N − k

)
cos(kt) cos(kϕi)

+
2

n+ 1

(
n
N

)−1 N∑
k=1

(
n

N − k

)
sin(kt) sin(kϕi),

and deduce that

Bn
i (t) =

1

n+ 1

(
n
N

)−1

cn(ϕi)
TDcn(t),

where D is the diagonal matrix

D = diag

((
n
N

)
, 2

(
n

N − 1

)
, 2

(
n

N − 1

)
, . . . , 2, 2

)
.

Letting Bn(t) denote the vector Bn(t) =
(
Bn

0 (t), . . . , Bn
n(t)

)T
, we have Bn(t) = Λncn(t) where

Λn =
1

n+ 1

(
n
N

)−1

Cn,nD,

which implies
Γ−1
n,dLn(t) = Λ−1

n Bn(t).

Consequently, denoting by p and q the vectors (p0, . . . , pn) and (q0, . . . , qn), respectively, we
have

pΓn,d = qΛn.

10

Trigonometric Tangent Interpolating Curves

(a) (b) (c) (d) (e) (f)

Figure 8: Another comparison of periodic Bézier curves (b), vertex interpolating curves (c),
our tangent interpolating type-1 (d) and type-2 curves (e), and cubic B-spline curves (f), all
defined by the same control polygon (a); cf. Figure 1. This example highlights the result given
by control polygons with a greatly varying control edge lengths (top), a zig-zag pattern (middle)
and a self-intersection (bottom).

Hence, we can switch between the control points of a tangent interpolating curve and the control
points of a periodic Bézier curve by solving either for p or for q, or rather by multiplying p or
q with a precomputed matrix. Similarly, we can swap between the control polygons p1 and p2

of type-1 and type-2 curves, respectively, by solving

p1Γn,1 = p2Γn,2.

The conversion between the periodic Bézier and the interpolating Lagrange form is discussed
in [Ramanantoanina and Hormann, 2023].

5. Conclusion

The representation of trigonometric polynomial curves as type-1 and type-2 tangent interpo-
lating curves that we propose enriches the existing modelling capabilities of these curves by
providing novel shape control tools. While trigonometric polynomials are a natural space for
modelling closed curves, the main drawback so far was that neither the Bézier nor the Lagrange
representation offer intuitive shape control for complex curves with a large number of control
points. This limitation is now remedied to a large extent by our type-2 representation, which
establishes a relation between the control polygon and the shape of the curve that is very close
to the corresponding relation in the case of cubic B-spline curves, regardless of the number of
control points.

However, one limitation of trigonometric polynomial curves is that they are restricted to
an odd number of control points. While this is not a severe constraint, it would be interesting

11

Trigonometric Tangent Interpolating Curves

to study how control polygons with an even number of control points can fit into the picture,
since this may sometimes be the natural choice for modelling curves with certain symmetric
features (e.g., an even degree rotational symmetry).

Moreover, it is well known in the case of classical Bézier and B-spline curves that rational
curves can model a bigger set of shapes. Hence, it could be worthwhile to investigate how
periodic rational Bézier curves [Ramanantoanina and Hormann, 2023] can be expressed in
tangent interpolating form with additional shape parameters.

Finally, it is also well known from B-spline curves that uniform nodes are not the proper
choice in case of control polygons whose edge lengths vary a lot. Akin to the B-spline setting,
future work should therefore explore the construction of trigonometric tangent interpolating
curves with respect to non-uniform nodes.

Acknowledgements

We thank the anonymous reviewers for their valuable comments and suggestions, which helped
to improve this paper. This work was supported by the Swiss National Science Foundation
(SNF) under project No. 188577 and the European Union’s Horizon 2020 research and innova-
tion programme under the Marie Sk lodowska-Curie grant agreement No. 860843.

References

[1] Berrut, J.-P. [1984]. Baryzentrische Formeln zur trigonometrischen Interpolation (I),
10.1007/BF00945179, Zeitschrift für angewandte Mathematik und Physik 35(1): 91–105.

[2] Carnicer, J. M. [1999]. Interpolation, shape control and shape properties, in J. M. Peña
(ed.), Shape Preserving Representations in Computer-Aided Geometric Design, Nova
Science Publishers, Commack, chapter 2, pp. 15–43.

[3] Gauss, C. F. [1866]. Theoria interpolationis methodo nova tractata, Werke, Vol. 3,
Königliche Gesellschaft der Wissenschaften, Göttingen, pp. 265–330.

[4] Hogg, R. V., McKean, J. W. and Craig, A. T. [2019]. Introduction to Mathematical
Statistics, 8th edn, Pearson, Boston.

[5] Moon, H. P., Kim, S. H. and Kwon, S.-H. [2023]. Gauss–Legendre polynomial basis for the
shape control of polynomial curves, 10.1016/j.amc.2023.127995, Applied Mathematics
and Computation 451: Article 127995, 16 pages.

[6] Powell, M. J. D. [1981]. Approximation Theory and Methods, Cambridge University Press,
Cambridge.

[7] Ramanantoanina, A. and Hormann, K. [2023]. Shape control tools for periodic Bézier
curves, 10.1016/j.cagd.2023.102193, Computer Aided Geometric Design 103: Article
102193, 12 pages.

[8] Róth, Á., Juhász, I., Schicho, J. and Hoffmann, M. [2009]. A cyclic basis for closed curve
and surface modeling, 10.1016/j.cagd.2009.02.002, Computer Aided Geometric Design
26(5): 528–546.

[9] Salzer, H. E. [1948]. Coefficients for facilitating trigonometric interpolation,
10.1002/sapm1948271274, Journal of Mathematics and Physics 27(1–4): 274–278.

[10] Sánchez-Reyes, J. [2009]. Periodic Bézier curves, 10.1016/j.cagd.2009.08.002, Computer
Aided Geometric Design 26(9): 989–1005.

12

http://doi.org/10.1007/BF00945179
http://doi.org/10.1016/j.amc.2023.127995
http://doi.org/10.1016/j.cagd.2023.102193
http://doi.org/10.1016/j.cagd.2009.02.002
http://doi.org/10.1002/sapm1948271274
http://doi.org/10.1016/j.cagd.2009.08.002

	Introduction
	Contributions

	Preliminaries
	Trigonometric tangent interpolating curves
	Partition of unity
	Linear independence

	Practical aspects
	Implementation
	Curve manipulation
	Curve similarities
	Degree elevation
	Basis transformations

	Conclusion

