
A comprehensive comparison of algorithms for evaluating rational
Bézier curves
Chiara Fuda · Andriamahenina Ramanantoanina · Kai Hormann

Abstract
Bézier curves are very important tools in various fields and applications, such as computer
graphics and computer-aided design. The de Casteljau algorithm is the first method intro-
duced for evaluating polynomial Bézier curves, later also generalized to the rational case and
surfaces. Although it presents an elegant definition through convex combinations and generally
yields stable results, it has quadratic time complexity, which means that its computational
cost can increase significantly with the number of control points. This represents a significant
limitation, especially when dealing with high-degree curves and real-time applications. For
this reason, numerous studies have been conducted in order to provide alternative approaches
and more efficient algorithms. In this paper, we present a collection of the most commonly
used algorithm in the state-of-the-art, also providing a comparison of their efficiency and their
numerical stability.

Citation info
Journal : Dolomites Research Notes on Approximation
Volume : 17(3), September 2024
Pages : 56–79
DOI : 10.14658/PUPJ-DRNA-2024-3-9

1. Introduction

Bézier curves were originally introduced in the context of car modeling for major automo-
tive manufacturers [Bézier, 1966, 1967; de Casteljau, 1959]. Nowadays, their utility extends
across numerous fields, like computer-aided design, simulation, approximation, robotics, artifi-
cial intelligence, etc. Many applications in these domains require real-time interactions or live
updates, thus necessitating fast evaluation times. For this reason, over the years, there have
been numerous studies dedicated to developing efficient evaluation algorithms for Bézier curves.
In this paper, we aim to present a comparison of the most commonly used algorithms, focusing
not only on their efficiency, but also on their numerical stability.

Given a set of n + 1 control points P0, . . . , Pn ∈ R2 with associated positive weights
w0, . . . , wn ∈ R>0, we define a rational Bézier curve P : [0, 1]→ R2 as

P (t) =

∑n
i=0 B

n
i (t)wiPi∑n

i=0 B
n
i (t)wi

, (1)

where

Bn
i (t) =

(
n

i

)
ti(1− t)n−i, i = 0, . . . , n, (2)

represents the Bernstein basis composed by polynomials of degree n and t ∈ [0, 1] is the param-
eter along the curve. There exist numerous methods for computing rational Bézier curves, such
as adaptations of the classic de Casteljau algorithm for polynomials in the rational case, or
more efficient approaches employing Horner-like schemes or basis conversions. We now present
the most commonly used algorithms and, for each of them, we describe how it is implemented
and provide the pseudocode (Appendix). Afterward, we investigate the numerical stability of
each algorithm and derive an upper bound on the relative error for most of them (Section 2).
Finally, we conduct an efficiency analysis (Section 3) and present some numerical experiments
to support our results (Section 4).

1

https://doi.org/10.14658/PUPJ-DRNA-2024-3-9

A comprehensive comparison of algorithms for evaluating rational Bézier curves

1.1 Rational de Casteljau algorithms

The most straightforward approach to compute P (t) is by using the classic quadratic time de
Casteljau algorithm for polynomials [Boehm and Müller, 1999]. In the case of a rational Bézier
curve of the type in (1), we recall that it can be considered as the central projection of the
spatial polynomial curve

P̂ (t) =
n∑

i=0

Bn
i (t)P̂i, P̂i =

(
wiPi

wi

)
, (3)

under the projection

proj(x, y, z) =

(
x

z
,
y

z

)
. (4)

This implies that we can apply the classical de Casteljau algorithm to P̂ (t) and then project the
final result according to (4) (Algorithm 1 and 2). This process is equivalent to first computing
the values of the numerator and the denominator with the recursive formulas{

N0
i = wiPi,

N r
i = N r−1

i (1− t) + N r−1
i+1 t,

and

{
D0

i = wi,

Dr
i = Dr−1

i (1− t) + Dr−1
i+1 t,

(5)

i = 0, . . . , n and r = 1, . . . , n, respectively, and then the final result as P (t) = Nn
0 /D

n
0 . We also

note that this method exhibits quadratic complexity.
Alternatively, Farin [1983] adapts this approach into a more robust quadratic time algorithm

(Algorithm 3) with additional geometric meaning, given by
w0

i = wi,

P 0
i = Pi,

wr
i = wr−1

i (1− t) + wr−1
i+1 t,

P r
i =

P r−1
i wr−1

i

wr
i

(1− t) +
P r−1
i+1 wr−1

i+1

wr
i

t,

(6)

i = 0, . . . , n and r = 1, . . . , n, and P (t) = P n
0 .

1.2 Horner-like algorithms

Schumaker and Volk [1986] are the first to achieve an algorithm for computing polynomial
Bézier curves with linear time complexity. Their idea is to use nested multiplications for the
computation, which results in a significant gain in terms of efficiency. We present a straightfor-
ward extension of the VS algorithm by first applying it on the numerator and the denominator
of P (t), and then simplifying some common factors. In particular, we express the rational
Bézier curve in (1) equivalently as

P (t) =

∑n
i=0 x

n−i
(
n
i

)
wiPi∑n

i=0 x
n−i
(
n
i

)
wi

, x =

{
(1− t)/t, t > 1/2

t/(1− t), t ≤ 1/2.
(7)

There are many methods for evaluating a polynomial; Goldman [2003] highlights two ap-
proaches: one using a Horner scheme, and the other employing a ladder pattern. However,
Warren [1993] shows that these forms are equivalent for the monomial basis, so we consider
the former. Therefore, the VS algorithm evaluates the numerator and the denominator using
a Horner scheme (Algorithm 4 and 5) as

P (t) =

(
n
n

)
wnPn + x

((
n

n−1

)
wn−1Pn−1 + x

((
n

n−2

)
wn−2Pn−2 + · · ·+ x

((
n
1

)
w1P1 + x

(
n
0

)
w0P0

)
. . .
))

(
n
n

)
wn + x

((
n

n−1

)
wn−1 + x

((
n

n−2

)
wn−2 + · · ·+ x

((
n
1

)
w1 + x

(
n
0

)
w0

)
. . .
)) , t > 1/2,

(
n
0

)
w0P0 + x

((
n
1

)
w1P1 + x

((
n
2

)
w2P2 + · · ·+ x

((
n

n−1

)
wn−1Pn−1 + x

(
n
n

)
wnPn

)
. . .
))

(
n
0

)
wn + x

((
n
1

)
w1 + x

((
n
2

)
w2 + · · ·+ x

((
n

n−1

)
wn−1 + x

(
n
n

)
wn

)
. . .
)) , t ≤ 1/2.

2

A comprehensive comparison of algorithms for evaluating rational Bézier curves

With the same strategy, Farin [2001] presents another Horner-like algorithm (Algorithm 4
and 6) by setting s = 1− t and computing P (t) in (1) as

P (t) =

∑n
i=0 t

isn−i
(n
i

)
wiPi∑n

i=0 t
isn−i

(n
i

)
wi

=

(
. . .

(((n
0

)
w0P0s+

(n
1

)
w1P1t

)
s+

(n
2

)
w2P2t2

)
s+ · · ·+

(n
n−1

)
wn−1Pn−1tn−1

)
s+

(n
n

)
wnPntn(

. . .
(((n

0

)
w0s+

(n
1

)
w1t

)
s+

(n
2

)
w2t2

)
s+ · · ·+

(n
n−1

)
wn−1tn−1

)
s+

(n
n

)
wntn

.

(8)

1.3 Geometric approach

On the one hand, while the rational de Casteljau adaptation by [Farin, 1983] has some nice
geometric interpretation, it can only be done in quadratic time. On the other hand, the VS
algorithm has linear time complexity, but it lacks geometric interpretation and properties. For
this reason, Woźny and Chudy [2020] introduce a new linear time algorithm that has a nice
geometric interpretation. In particular, P (t) can be computed recursively (Algorithm 7) using
a Horner-like scheme and convex combinations ash0 = 1, hi =

wihi−1t(n− i + 1)

wi−1i(1− t) + wihi−1t(n− i + 1)
,

T0 = P0, Ti = (1− hi)Ti−1 + hiPi.

(9)

From these recursive formulas, this algorithm has an elegant geometric interpretation since
Ti ∈ [Ti−1, Pi].

1.4 Wang–Ball algorithm

Another approach to achieve an algorithm with linear time complexity is by converting the
Bernstein basis into a different basis. There exist several methods in this direction, such as
transforming the Bernstein into the Wang–Ball basis [Dejdumrong et al., 2001; Phien and
Dejdumrong, 2000; Wang, 1987], the DP basis [Dejdumrong, 2006; Delgado and Peña, 2003,
2004], and other similar types of bases [Dejdumrong, 2008]; the former is proven to be the most
efficient. The rational Wang–Ball curve, defined by the control points R0, . . . , Rn with their
respective weights v0, . . . , vn, is given by

P (t) =

∑n
i=0 A

n
i (t)viRi∑n

i=0A
n
i (t)vi

, (10)

where the Wang–Ball basis {An
i }i=0,...,n is defined as

An
i (t) =

(2t)i(1− t)i+2, 0 ≤ i ≤ ⌊n/2⌋ − 1,

(2t)⌊n/2⌋(1− t)⌈n/2⌉, i = ⌊n/2⌋ ,
(2(1− t))⌊n/2⌋t⌈n/2⌉, i = ⌈n/2⌉ ,
An

n−i(1− t), ⌈n/2⌉+ 1 ≤ i ≤ n.

(11)

Actually, in order to achieve a linear time method, its implementation uses a recursive algorithm
similar to (6), but for the new set of control points and weights (Algorithm 10). Specifically, it
starts by setting

n0 = n, v0i = vi, and R0
i = Ri, i = 0, . . . , n0, (12)

and then, at each step r = 1, . . . , n of the recursion, it defines nr = n − r new weights and
control points. In particular, if nr is odd, they are given by

vri = vr−1
i , i = 0, . . . , nr−3

2
,

vri = vr−1
i (1− t) + vr−1

i+1 t, i = nr−1
2

,

vri = vr−1
i , i = nr+1

2
, . . . , nr,

and

Rr

i = Rr−1
i , i = 0, . . . , nr−3

2
,

Rr
i =

Rr−1
i vr−1

i
vr
i

(1− t) +
Rr−1

i+1 vr−1
i+1

vr
i

t, i = nr−1
2

,

Rr
i = Rr−1

i , i = nr+1
2

, . . . , nr,

(13)

3

A comprehensive comparison of algorithms for evaluating rational Bézier curves

while, if nr is even, they are
vri = vr−1

i , i = 0, . . . , nr
2

− 2,

vri = vr−1
i (1− t) + vr−1

i+1 t, i = nr
2

− 1, nr
2
,

vri = vr−1
i , i = nr

2
+ 1, . . . , nr,

and

Rr

i = Rr−1
i , i = 0, . . . , nr

2
− 2,

Rr
i =

Rr−1
i vr−1

i
vr
i

(1− t) +
Rr−1

i+1 vr−1
i+1

vr
i

t, i = nr
2

− 1, nr
2
,

Rr
i = Rr−1

i , i = nr
2

+ 1, . . . , nr,

(14)

and the result is P (t) = Rn
0 . Before proceeding with this algorithm, there is a prepossessing step

to get the values v0, . . . , vn and R0, . . . , Rn (Algorithm 8 and 9). In particular, the weights and
control points of the Bézier and Wang–Ball representations can be converted back-and-forth by
means of a matrix multiplication [Hu et al., 1996]. However, for the sake of numerical stability,
Dejdumrong et al. [2001] present the explicit formulas to obtain the Wang–Ball control points
and weights from the corresponding Bézier ones, that are

v0 = w0,

vn = wn,

vi = 1
2i

[(
n
i

)
wi −

∑i−1
k=0 2k

(
n−2−2k

i−k

)
vk −

∑n
k=n−i+1 2n−k

(
2k−2−n

k−i

)
vk

]
, i < ⌊n/2⌋ ,

vi = 1
2n−i

[(
n
i

)
wi −

∑n−i
k=0 2k

(
n−2−2k

i−k

)
vk −

∑n
k=i+1 2n−k

(
2k−2−n

k−i

)
vk

]
, i > ⌈n/2⌉ ,

vi = 1
2i

[(
n
i

)
wi −

∑i−1
k=0 2k

(
n−2−2k

i−k

)
vk −

∑n
k=i+2 2n−k

(
2k−2−n

k−i

)
vk

]
, i = ⌊n/2⌋ ,

vi = 1
2n−i

[(
n
i

)
wi −

∑i−2
k=0 2k

(
n−2−2k

i−k

)
vk −

∑n
k=i+1 2n−k

(
2k−2−n

k−i

)
vk

]
, i = ⌈n/2⌉

(15)

and

R0 = P0,

Rn = Pn,

Ri = 1
2ivi

[(
n
i

)
wiPi −

∑i−1
k=0 2k

(
n−2−2k

i−k

)
vkRk −

∑n
k=n−i+1 2n−k

(
2k−2−n

k−i

)
vkRk

]
, i < ⌊n/2⌋ ,

Ri = 1
2n−ivi

[(
n
i

)
wiPi −

∑n−i
k=0 2k

(
n−2−2k

i−k

)
vkRk −

∑n
k=i+1 2n−k

(
2k−2−n

k−i

)
vkRk

]
, i > ⌈n/2⌉ ,

Ri = 1
2ivi

[(
n
i

)
wiPi −

∑i−1
k=0 2k

(
n−2−2k

i−k

)
vkRk −

∑n
k=i+2 2n−k

(
2k−2−n

k−i

)
vkRk

]
, i = ⌊n/2⌋ ,

Ri = 1
2n−ivi

[(
n
i

)
wiPi −

∑i−2
k=0 2k

(
n−2−2k

i−k

)
vkRk −

∑n
k=i+1 2n−k

(
2k−2−n

k−i

)
vkRk

]
, i = ⌈n/2⌉ .

(16)
We note that, before computing vk and Rk, k = 0, . . . , n, the weights vi and vn−i and the control
points Ri and Rn−i, i = 0, . . . , k − 1, must be computed.

1.5 Bernstein–Fourier algorithm

Another series of approaches involving a transformation to another form are explored in [Bez-
erra, 2012, 2013; Bezerra and Sacht, 2011]; the most efficient amongst them is the Bernstein–
Fourier method. It involves applying the Inverse Fast Fourier Transform (IFFT) on the control
points, that is computing the points Ŝi = ifft(P̂i), i = 0, . . . , n, for P̂i in (3) (Algorithm 12).
Then, P (t) is the central projection on the xy-plane under the projection (4) of

P̂ (t) =
n∑

i=0

(ζ it + (1− t))nŜi, (17)

where the ζi, i = 0, . . . , n, are the roots of unity of order n+1. Its implementation (Algorithm 11
and 13) requires O(n log n) time and involves complex number operations. However, there
are some optimisations that can be performed so that this method can compete with the
aforementioned methods (Algorithm 11 and 14). First, we note that

Ŝn+1−i = Ŝi for i =

{
1, . . . , n

2
, if n is even,

1, . . . , n−1
2
, if n is odd.

4

A comprehensive comparison of algorithms for evaluating rational Bézier curves

Additionally, by letting s = 1− t, we have

(ζit + (1− t))n = ζ i(ζis + (1− s))n.

Hence, we can compute P̂ (t) and P̂ (1 − t) simultaneously with Ŝk, k = 0, . . . , N , for N =
(n + 1)/2. Then, if n is even, we have

P̂ (t) = Ŝ0 + 2

n/2∑
i=1

Re
(
(ζit + (1− t))nŜi

)
,

P̂ (1− t) = Ŝ0 + 2

n/2∑
i=1

Re

(
(ζit + (1− t))n

Ŝi

ζi

)
,

while, if n is odd, we have

P̂ (t) = Ŝ0 − (1− 2t)nŜN + 2
N−1∑
i=1

Re
(
(ζit + (1− t))nŜi

)
,

P̂ (1− t) = Ŝ0 − (1− 2t)nŜN + 2
N−1∑
i=1

Re

(
(ζit + (1− t))n

Ŝi

ζi

)
.

1.6 Barycentric algorithm

Finally, Ramanantoanina and Hormann [2021] propose another alternative to convert the ra-
tional Bézier representation to a barycentric rational interpolating form (Algorithm 17 or, for
a more optimized version, Algorithm 18). In particular, given a set of interpolation points
Q0, . . . , Qn with their respective weights u0, . . . , un and nodes t0, . . . , tn, a barycentric rational
interpolant is defined as

P (t) =

∑n
i=0

ui

t−ti
Qi∑n

i=0
ui

t−ti

. (18)

The barycentric interpolation points and weights are related with the corresponding Bézier ones
as

Qi = P (ti) and ui = z(ti)
∏
k ̸=i

1

ti − tk
, i = 0, . . . , n,

where z(t) is the denominator of P (t) in (1). A common choice for the set of nodes is given by
the Chebyshev nodes of the second kind in [0, 1], which are defined as tn−i = 1/2 cos(iπ/n)+1/2,
i = 0, . . . , n. In this case, the weights turn out to be computed in linear time as [Salzer, 1972]

ui = (−1)iδiz(ti), δi =

{
1/2, i = 0 or i = n,

1, i = 1, . . . , n− 1.

Alternatively, we can also use uniformly distributed nodes ti = i/n, i = 0, . . . , n, with weights
of the form

ui = (−1)i
(
n

i

)
z(ti).

For the sake of efficiency, we propose to compute the values Qi = P (ti) by evaluating the
rational Bézier curve P at ti through an adapted version of the rational VS algorithm. Doing
so, we can also obtain the values z(ti) within the same algorithm (Algorithm 15 and 16) as

z(ti) =
n∑

i=0

xn−i

(
n

i

)
wi ×

{
tn, t > 1/2,

(1− t)n, t ≤ 1/2,
(19)

for x in (7).

5

A comprehensive comparison of algorithms for evaluating rational Bézier curves

2. Numerical stability

Let us now focus on analysing the numerical stability of the different algorithms that evaluate
a rational Bézier curve. We will examine all the methods introduced previously, except for the
Bernstein–Fourier algorithm.

To proceed, we consider a computer that uses a set F of floating-point numbers with the
corresponding machine epsilon ϵ and let fl: R → F be the rounding function that maps each
x ∈ R to the closest floating-point approximation fl(x) ∈ F. Then, we study the relative error
E ∈ R2 defined as

E(t) =
|fl(P (t))− P (t)|

|P (t)|
=

(
|fl(Px(t))− Px(t)|

|Px(t)|
,
|fl(Py(t))− Py(t)|

|Py(t)|

)
(20)

for each algorithm, where P (t) is the exact result and fl(P (t)) that of its finite-precision im-
plementation. To do so, we assume [Trefethen and Bau, 1997] that for any x ∈ R, x ̸= 0, the
relative error is bounded from above by the machine epsilon ϵ, or, equivalently, we can always
find some δ ∈ R with |δ| < ϵ, such that

fl(x) = x(1 + δ). (21)

The same holds for any arithmetic operation ∗ ∈ {+,−,×,÷} between two arbitrary floating-
point numbers x, y ∈ F, that is, there exists some δ ∈ R with |δ| < ϵ, such that

fl(x ∗ y) = (x ∗ y)(1 + δ). (22)

This property can also be extended to cases involving multiple operations, such as sums or
products, where the upper bound on |δ| depends on the number of operations performed; for
more detailed information, we refer the interested reader to Fuda et al. [Fuda et al., 2022,
Section 2]. Finally, we always assume that the input data t, wi and Pi are floating-point
numbers, so they do not introduce any numerical error during the computation.

2.1 Convex combinations

We start by examining the numerical stability of algorithms that evaluate a rational Bézier
curve P at t through a recursive method defined by convex combinations. Specifically, we focus
on the rational de Casteljau algorithm and the Wang–Ball algorithm. Regarding the former
defined in (6), our analysis begins with a study of the error propagation in the weights wr

i ,
followed by an investigation into the relative error of the values P r

i . These results lead to an
upper bound on the relative error E in (20) in the case of P (t) = P n

0 .

Lemma 1. For any t, w0, . . . , wn ∈ F and r ∈ {1, . . . , n}, there exist ωr
0, . . . , ω

r
n ∈ R such that

the weights wr
i in (6) satisfy fl(wr

i) = wr
i (1 + ωr

i), i = 0, . . . , n, with |ωr
i | ≤ U(wr

i)ϵ + O(ϵ2) and

U(wr
i) = 3r.

Proof. First, we notice that

fl(wr
i) = wr−1

i (1 + ωr−1
i)(1− t)(1 + δ1) + wr−1

i+1 (1 + ωr−1
i+1)t(1 + δ2)

= wr−1
i (1− t)(1 + ωr−1

i + δ1 + O(ϵ2)) + wr−1
i+1 t(1 + ωr−1

i+1 + δ2 + O(ϵ2)),

where δ1 and δ2 are the errors introduced by the operations in the first and second addends,
respectively, that are one product and one sum in both cases, plus one subtraction for the

6

A comprehensive comparison of algorithms for evaluating rational Bézier curves

first addend only. Therefore, it follows from (22) that |δ1|, |δ2| ≤ 3ϵ + O(ϵ2). Moreover, the
intermediate value theorem further guarantees that

fl(wr
i) = (wr−1

i (1− t) + wr−1
i+1 t)(1 + ωr

i),

for some ωr
i ∈ [min(ωr−1

i +δ1+O(ϵ2), ωr−1
i+1 +δ2+O(ϵ2)),max(ωr−1

i +δ1+O(ϵ2), ωr−1
i+1 +δ2+O(ϵ2))].

Now, we can prove the statement by induction over r. The base case follows by the fact that
w0

i = wi, therefore ω0
i = 0 for all i = 0, . . . , n. Finally, the inductive step from r−1 to r follows

from the fact that |ωr
i | ≤ maxj=i,i+1|ωr−1

j |+ 3ϵ+O(ϵ2), together with the inductive hypothesis,

that is |ωr−1
i | ≤ 3(r − 1)ϵ + O(ϵ2), i = 0, . . . , n.

Proposition 2. For any t, w0, . . . , wn, P0, . . . , Pn ∈ F and r ∈ {1, . . . , n}, the relative errors of
the P r

i in (6) satisfy

|fl(P r
i (t))− P r

i (t)|
|P r

i |
≤
∑r

k=0B
r
k(t)|Pi+kwi+k|∣∣∑r

k=0B
r
k(t)Pi+kwi+k

∣∣(3r2 + 5r)ϵ + O(ϵ2), i = 0, . . . , n.

Therefore, the relative error in (20) for P (t) = P n
0 satisfies

E(t) ≤
∑n

k=0B
n
k (t)|Pkwk|∣∣∑n

k=0B
n
k (t)Pkwk

∣∣(3n2 + 5n)ϵ + O(ϵ2).

Proof. Denoting by φr
i the relative errors introduced by the computation of P r

i , i = 0, . . . , n
and r = 1, . . . , n, we first notice that

fl(P r
i) =

P r−1
i (1 + φr−1

i)wr−1
i (1 + ωr−1

i)(1− t)(1 + δ1) + P r−1
i+1 (1 + φr−1

i+1)wr−1
i+1 (1 + ωr−1

i+1)t(1 + δ2)

wr
i (1 + ωr

i)
,

where |ωm
j | ≤ 3mϵ+O(ϵ2), j = i, i+1 and m = r−1, r, by Lemma 1 and δ1 and δ2 are the errors

introduced by the operations in the first and second addends of the numerator, respectively,
that are two products, one sum, and one division each, plus one subtraction for the first addend
only. Therefore, it follows from (22) that |δ1|, |δ2| ≤ 5ϵ+O(ϵ2). By Taylor expansion, we know
that

1

(1 + ωr
i)

= 1− ωr
i + O(ϵ2),

hence

fl(P r
i) = P r

i +
P r−1
i wr−1

i (1− t)

wr
i

(φr−1
i +ωr−1

i −ωr
i +δ1+O(ϵ2))+

P r−1
i+1 w

r−1
i+1 t

wr
i

(φr−1
i+1+ωr−1

i+1−ωr
i +δ2+O(ϵ2)).

Then, using the fact that fl(P r
i) − P r

i = P r
i φ

r
i , the triangle inequality, and the upper bounds

on the relative errors introduced by the weights and the operations, we obtain

|P r
i φ

r
iw

r
i | ≤ |P r−1

i φr−1
i wr−1

i (1− t) + P r−1
i+1 φr−1

i+1w
r−1
i+1 t|+ |P r−1

i wr−1
i (1− t)(ωr−1

i − ωr
i + δ1) + P r−1

i+1 wr−1
i+1 t(ω

r−1
i+1 − ωr

i + δ2)|+O(ϵ2)

≤ |P r−1
i φr−1

i wr−1
i |(1− t) + |P r−1

i+1 φr−1
i+1w

r−1
i+1 |t+ (|P r−1

i wr−1
i |(1− t) + |P r−1

i+1 wr−1
i+1 |t)(6r + 2)ϵ+O(ϵ2).

(23)

In general, we know that1 Pm
j wm

j =
∑m

k=0 B
m
k Pj+kwj+k, j = 0, . . . , n and m = 1, . . . , n, there-

fore, by also using the relations Br−1
k (1 − t) = (r − k)/rBr

k and Br−1
k t = (k + 1)/rBr

k+1,

1In the proof, we omit the dependence on the variable t of the basis functions, that is, Bn
i means Bn

i (t).

7

A comprehensive comparison of algorithms for evaluating rational Bézier curves

k = 0, . . . , r − 1, we obtain

|P r−1
i wr−1

i |(1− t) + |P r−1
i+1 w

r−1
i+1 |t =

r−1∑
k=0

Br−1
k (1− t)|Pi+kwi+k|+

r−1∑
k=0

Br−1
k t|Pi+1+kwi+1+k|

=
r−1∑
k=0

r − k

r
Br

k|Pi+kwi+k|+
r−1∑
k=0

k + 1

r
Br

k+1|Pi+1+kwi+1+k|

= Br
0|Piwi|+

r−1∑
k=1

(
r − k

r
+

k

r

)
Br

k|Pi+kwi+k|+ Br
r |Pi+rwi+r|

=
r∑

k=0

Br
k|Pi+kwi+k|

(24)
and, by (23),

|P r
i φ

r
iw

r
i | ≤ |P r−1

i φr−1
i wr−1

i |(1− t)+ |P r−1
i+1 φ

r−1
i+1w

r−1
i+1 |t+

r∑
k=0

Br
k|Pi+kwi+k|(6r+2)ϵ+O(ϵ2). (25)

Now, we can prove the statement by induction over r. The base case follows by the fact that
P 0
i = Pi, i = 0, . . . , n, hence φ0

i = 0. Finally, the inductive step from r − 1 to r follows from
the inductive hypothesis, that is

|P r−1
i φr−1

i wr−1
i | ≤

r−1∑
k=0

Br−1
k |Pi+kwi+k|[3(r − 1)2 + 5(r − 1)]ϵ + O(ϵ2), i = 0, . . . , n,

together with (25) and the fact that, by (24),

r−1∑
k=0

Br−1
k (1− t)|Pi+kwi+k|+

r−1∑
k=0

Br−1
k t|Pi+1+kwi+1+k| =

r∑
k=0

Br
k|Pi+kwi+k|.

We now turn our attention to the definition of the Wang–Ball algorithm in (12)–(14), which
is very similar to the rational de Casteljau method in (6), except for two differences. Firstly,
only the “central” Wang–Ball weights and control points are updated at each step r = 1, . . . , n.
Secondly, we cannot assume that the input data vi and Ri are exact, as they are themselves the
result of the conversion formulas in (15)–(16). On the one hand, although only a few weights
change at each iteration, the final error propagation is the same as for the recursive formulas
in (6), because some of the vri and Rr

i are modified at each step r. Consequently, we can use
the same proof technique of Lemma 1 to analyse the error propagation in the weights vri and of
Proposition 2 to get the upper bounds on the relative errors of the values Rr

i and P (t) = Rn
0 .

On the other hand, in this scenario, we also have to consider the initial errors in the weights vi
and control points Ri, which are introduced in the preprocessing step that converts the Bézier
weights and control points into their corresponding Wang–Ball ones. Therefore, we state below
the equivalent of Lemma 1 and Proposition 2 in the case of Wang–Ball algorithm.

Lemma 3. Suppose that there exist υ0
0, . . . , υ

0
n ∈ R with

fl(vi) = vi(1 + υ0
i), |υ0

i | ≤ U(vi)ϵ + O(ϵ2), i = 0, . . . , n,

for some constants U(vi). Then, for any r ∈ {1, . . . , n}, there exist υr
0, . . . , υ

r
nr
∈ R such that

the weights vri in (13)–(14) satisfy fl(vri) = vri (1 + υr
i), i = 0, . . . , nr, with |υr

i | ≤ U(vri)ϵ+O(ϵ2)
and

U(vri) = 3r + max
j=0,...,n

U(vj).

8

A comprehensive comparison of algorithms for evaluating rational Bézier curves

Proposition 4. Suppose that there exist υ0
0, . . . , υ

0
n ∈ R with

fl(vi) = vi(1 + υ0
i), |υ0

i | ≤ U(vi)ϵ + O(ϵ2), i = 0, . . . , n

and ρ00, . . . , ρ
0
n ∈ R with

fl(Ri) = Ri(1 + ρ0i), |ρ0i | ≤ U(Ri)ϵ + O(ϵ2), i = 0, . . . , n,

for some constants U(vi) and U(Ri). Then, for any r ∈ {1, . . . , n}, the relative errors of the
Rr

i in (13)–(14) satisfy

|fl(Rr
i (t))−Rr

i (t)|
|Rr

i |
≤
∑r

k=0 A
r
k(t)|Ri+kvi+k|∣∣∑r

k=0 A
r
k(t)Ri+kvi+k

∣∣
(

3r2 + 5r+ max
j=0,...,n

U(vj) + max
k=0,...,n

U(Rk)

)
ϵ+O(ϵ2),

i = 0, . . . , n. Therefore, the relative error in (20) for P (t) = Rn
0 satisfies

E(t) ≤
∑n

k=0A
n
k(t)|Rkvk|∣∣∑n

k=0A
n
k(t)Rkvk

∣∣
(

3n2 + 5n + max
j=0,...,n

U(vj) + max
k=0,...,n

U(Rk)

)
ϵ + O(ϵ2).

Finally, to provide a comprehensive understanding of the error propagation within the
Wang–Ball algorithm, we also present an analysis of the numerical stability of the conversion
formulas in (15)–(16), which provides an initial estimate of the constants U(vi) and U(Ri),
i = 0, . . . , n, of Lemma 3 and Proposition 4. Before delving into these details, we introduce
some notation to shorten the expressions of the vi and Ri. Considering i ∈ {0, . . . , n}, we define
e ∈ N as

e =

{
i, i ≤ ⌊n/2⌋ ,
n− i, i ≥ ⌈n/2⌉

and the sets of indexes I1,i and I2,i as

I1,i =

{0, 1, . . . , i− 1}, i ≤ ⌊n/2⌋ ,
{0, 1, . . . , i− 2}, i = ⌈n/2⌉ ,
{0, 1, . . . , n− i}, i > ⌈n/2⌉ ,

I2,i =

{n− i + 1, n− i + 2, . . . , n}, i < ⌊n/2⌋ ,
{i + 2, i + 3, . . . , n}, i = ⌊n/2⌋ ,
{i + 1, i + 2, . . . , n}, i ≥ ⌈n/2⌉ .

Then, we set

bi =

(
n

i

)
, ak = 2k

(
n− 2− 2k

i− k

)
, and ck = 2n−k

(
2k − 2− n

k − i

)
,

thus we can express the weights vi in (15) as

vi =
1

2e

(
biwi −

∑
k∈I1,i

akvk −
∑
k∈I2,i

ckvk

)
, i = 0, . . . , n, (26)

and the control points Ri in (16) as

Ri =
1

2evi

(
biwiPi −

∑
k∈I1,i

akvkRk −
∑
k∈I2,i

ckvkRk

)
, i = 0, . . . , n. (27)

Moreover, we denote by Mi the maximum between the constants Ai = max{ak | k ∈ I1,i} and
Ci = max{ck | k ∈ I2,i}, i = 1, . . . , n− 1.

9

A comprehensive comparison of algorithms for evaluating rational Bézier curves

Lemma 5. For any t, w0, . . . , wn ∈ F, there exist υ0, . . . , υn ∈ R such that the Wang–Ball
weights vi in (26) satisfy fl(vi) = vi(1 + υi), i = 0, . . . , n, with |υi| ≤ U(vi)ϵ + O(ϵ2) and

U(vi) =
maxj=1,n−1,...,n−i,i

(
bjwj +

∑
k∈I1,j

akvk +
∑

k∈I2,j
ckvk

)∣∣biwi −
∑

k∈I1,i
akvk −

∑
k∈I2,i

ckvk
∣∣ M1Mn−1 . . .Mn−iMi ×

(2i+ 1)!, i < ⌈n/2⌉ ,

[2(n− i) + 2]!, i ≥ ⌈n/2⌉ .
(28)

Proof. First of all, we notice that the weights are computed in the order v0, vn, v1, vn−1, v2,
vn−2, . . . , vm−1, vm, for m = ⌈n/2⌉. Therefore, when computing vi, i = 1, . . . , n− 1, the number
of vk, k ∈ I1,i∪ I2,i, involved in (26) are exactly 2i, if i < ⌈n/2⌉, and 2(n− i) + 1, otherwise. At
the end, they are at most n, which is the case of the “central” weight vm. The proof is carried
out assuming i < ⌈n/2⌉, but similar arguments can be applied to the case i ≥ ⌈n/2⌉.

We first notice that2

fl(vi) =
1

2e

(
biwi(1 + δi)−

∑
k∈I1,i

akvk(1 + υk)(1 + δk)−
∑
k∈I2,i

ckvk(1 + υk)(1 + δk)

)

= vi +
1

2e

(
biwiδi −

∑
k∈I1,i

akvk(υk + δk + O(ϵ2))−
∑
k∈I2,i

ckvk(υk + δk + O(ϵ2))

)
,

where δj, j = i or j ∈ I1,i ∪ I2,i, are the errors introduced by the operations in the addends. In
particular, these errors are affected at most3 by one product and 2i sums. Therefore, it follows
from (22) that |δj| ≤ (2i+ 1)ϵ+O(ϵ2). Then, using the fact that fl(vi)− vi = viυi, the triangle
inequality, and the upper bounds on the relative errors introduced by the operations in the
addends, we obtain

|viυi| ≤
1

2e

[(
biwi +

∑
k∈I1,i

akvk +
∑
k∈I2,i

ckvk

)
(2i + 1)ϵ +

∑
k∈I1,i

ak|vkυk|+
∑
k∈I2,i

ck|vkυk|+ O(ϵ2)

]
.

We know that in
∑

k∈I1,i ak|vkυk| +
∑

k∈I2,i ck|vkυk| are performed 2i − 1 sums, therefore, it
follows that

|viυi| ≤
1

2e

[(
biwi +

∑
k∈I1,i

akvk +
∑
k∈I2,i

ckvk

)
(2i + 1)ϵ + (2i− 1)Mi max

k∈I1,i∪I2,i
|vkυk|+ O(ϵ2)

]
.

Then, we can use this inequality recursively and, recalling that υ0 = υn = 0 and each time we
go one step back in the recursion the set I1,k ∪ I2,k decreases by one, we get

|viυi| ≤
1

2e
max

j=1,n−1,...,n−i,i

(
bjwj +

∑
k∈I1,j

akvk +
∑
k∈I2,j

ckvk

)
(2i + 1)Mϵ + O(ϵ2),

where

M = 1+ (2i− 1)Mi +(2i− 1)(2i− 2)MiMn−i + · · ·+(2i− 1)!MiMn−i . . .Mn−1M1 ≤ (2i− 1)!MiMn−i . . .Mn−1M1 × 2i,

which gives the statement.

2Any operation with powers of 2 are exact in floating-point arithmetic, so they do not introduce any relative
error.

3We assume that the computations of all binomial coefficients involve only integer operations, therefore they
do not introduce any floating-point relative error.

10

A comprehensive comparison of algorithms for evaluating rational Bézier curves

Lemma 6. For any t, w0, . . . , wn ∈ F, there exist ρ0, . . . , ρn ∈ R such that the Wang–Ball
control points Ri in (27) satisfy fl(Ri) = Ri(1 + ρi), i = 0, . . . , n, with |ρi| ≤ U(Ri)ϵ + O(ϵ2)
and

U(Ri) = U(Rivi) + U(vi) + 1,

for U(vi) in (28) and

U(Rivi) ≤
maxj=1,n−1,...,n−i,i

(
bjwj |Pj | +

∑
k∈I1,j

akvk|Rk| +
∑

k∈I2,j
ckvk|Rk|

)
∣∣biwiPi −

∑
k∈I1,i

akvkRk −
∑

k∈I2,i
ckvkRk

∣∣ M1Mn−1 . . .Mn−iMi×

(2i + 2)!, i < ⌈n/2⌉ ,

[2(n − i) + 3]!, i ≥ ⌈n/2⌉ .
(29)

Proof. The study of the propagation of the error in Rivi = 1/2e
(
biwiPi −

∑
k∈I1,i akvkRk −∑

k∈I2,i ckvkRk

)
can be done with the same procedure used in Lemma 5, with the differences

that every addend is now affected by one more product by Pi or Rk, and we also have to consider
the relative errors υi introduced by the weights vi, i = 0, . . . , n. Therefore, denoting by ϕi and δ
the errors introduced by the computation of Rivi and the division by vi, respectively, we obtain
by (22) and Lemma 5 that

fl(Ri) =
1

2evi(1 + υi)

(
biwiPi−

∑
k∈I1,i

akvkRk−
∑
k∈I2,i

ckvkRk

)
(1+ϕi)(1+δ), i = 0, . . . , n, (30)

for |υi| ≤ U(vi)ϵ + O(ϵ2) with U(vi) in (28), |ϕi| ≤ U(Rivi)ϵ + O(ϵ2) with U(Rivi) in (29), and
|δ| ≤ ϵ. Therefore, we can use Taylor expansion in (30) to get

fl(Ri) = Ri(1 + ϕi)(1 + δ)(1− υi + O(ϵ2)) = Ri(1 + ϕi − υi + δ + O(ϵ2))

and the statement follows for ρi = ϕi − υi + δ with |ρi| ≤ |ϕi|+ |υi|+ |δ| ≤ (U(Rivi) + U(vi) +
1)ϵ + O(ϵ2).

It is worth noting that the upper bounds on the relative errors derived for vi and Ri appear
to be large even for moderate values of n. However, in our experiments, we did not observe
instability in their implementations, even when considering n = 50. Therefore, we believe that
there is room for improvement in these bounds.

2.2 Horner schemes

We continue our analysis by studying the error propagation that occurs in the algorithms that
evaluate a rational Bézier curve P at t through a Horner scheme, which is the case of the
implementations of the two formulas in (7) and (8). In these specific contexts, we can use an
already known theorem by Fuda et al. [2022] that gives an upper bound for any function that
is expressed in the form

r(x) =

∑N
k=0 ak(x)fk∑M
j=0 bj(x)

(31)

for some data values fk and functions ak and bj, k = 0, . . . , N and j = 0, . . . ,M .

Theorem 7. Suppose that there exist α0, . . . , αN ∈ R with

fl(ak(x)) = ak(x)(1 + αk), |αk| ≤ Aϵ + O(ϵ2), k = 0, . . . , N (32)

and β0, . . . , βM ∈ R with

fl(bj(x)) = bj(x)(1 + βj), |βj| ≤ Bϵ + O(ϵ2), j = 0, . . . ,M (33)

11

A comprehensive comparison of algorithms for evaluating rational Bézier curves

for some constants A and B. Then, assuming that the data fi are given as floating-point
numbers, the relative forward error of r in (31) satisfies

|fl(r(x))− r(x)|
|r(x)|

≤ (N + 2 + A)α(x)ϵ + (M + B)β(x)ϵ + O(ϵ2),

where

α(x) =

∑N
k=0|ak(x)fk|

|
∑N

k=0 ak(x)fk|
and β(x) =

∑M
j=0|bj(x)|

|
∑M

j=0 bj(x)|
,

for ϵ small enough.

We can use this result for both formulas in (7) and (8), as they fit the expression in (31)
for N = M = n, fk = Pk, and ak = bk = xn−k

(
n
k

)
wk or ak = bk = tksn−k

(
n
k

)
wk, k = 0, . . . , n,

respectively. Moreover, assuming that the binomial coefficients are implemented without in-
troducing any floating-point relative error via integer arithmetic, the computations of the ak,
k = 0, . . . , n, involve two products plus at most n subtractions, n divisions, and n− 1 products
for xn−k in (7) and two products plus at most n subtractions and n − 1 products in case of
tksn−k in (8). This implies that the constants in (32) and (33) are A = B = 3n + 1 in case of
formula in (7) and A = B = 2n + 1 in case of (8). Therefore, it follows from Theorem 7 that
the relative error E in (20) for P (t) computed with (7) satisfies

E(t) ≤
∑n

k=0|Bn
k (t)wkPk|

|
∑n

k=0B
n
k (t)wkPk|

(4n + 3)ϵ + (4n + 1)ϵ + O(ϵ2), (34)

while with (8)

E(t) ≤
∑n

k=0|Bn
k (t)wkPk|

|
∑n

k=0B
n
k (t)wkPk|

(3n + 3)ϵ + (3n + 1)ϵ + O(ϵ2).

Notably, the difference 1 − t cannot be problematic, because we assume that t is an exact
floating-point number. However, if instead t is the floating-point approximation of a real
number, then the formula in (8) may become unstable when t approaches 1. Conversely, the
formula in (7) represents a stable way to evaluate P thanks to the distinction of the two cases
in the definition of x.

2.3 Geometric approach

We proceed to analyse the error propagation of the recursive algorithm given by the formulas
in (9). In particular, we first study how the error propagates during the computation of the
values hi, i = 0, . . . , n, and then we examine the relative errors of the values Ti, i = 0, . . . , n.
This analysis finally leads to an upper bound on the relative error E in (20) in the case of
P (t) = Tn.

Lemma 8. For any t, w0, . . . , wn ∈ F, there exist η0, . . . , ηn ∈ R such that the hi in (9) satisfy
fl(hi) = hi(1 + ηi), i = 0, . . . , n, with |ηi| ≤ U(hi)ϵ + O(ϵ2) and

U(hi) = 23(2i − 1).

Proof. We first notice that

fl(hi) =
wihi−1(1 + ηi−1)t(n− i + 1)(1 + δ1)

wi−1i(1− t)(1 + δ2) + wihi−1(1 + ηi−1)t(n− i + 1)(1 + δ3)

=
wihi−1t(n− i + 1)(1 + δ1 + ηi−1 + O(ϵ2))

wi−1i(1− t)(1 + δ2) + wihi−1t(n− i + 1)(1 + δ3 + ηi−1 + O(ϵ2))
,

12

A comprehensive comparison of algorithms for evaluating rational Bézier curves

where δ1 is the error introduced by the floating-point operations in the numerator, that are
three products and one division, and δ2 and δ3 are those related to the first and second addends
in the denominator, respectively, that are two products, one subtraction, and one sum for the
former and three products and one sum for the latter. Therefore, it follows from (22) that
|δ1|, |δ2|, |δ3| ≤ 4ϵ + O(ϵ2). Moreover, the intermediate value theorem further guarantees that

fl(hi) =
wihi−1t(n− i + 1)(1 + δ1 + ηi−1 + O(ϵ2))

[wi−1i(1− t) + wihi−1t(n− i + 1)](1 + δi−1)
,

for some δi−1 ∈ [min(δ2, δ3 + ηi−1 + O(ϵ2)),max(δ2, δ3 + ηi−1 + O(ϵ2))] = [δ2, δ3 + ηi−1 + O(ϵ2)],
and the Taylor expansion of 1/(1 + δi−1) gives

fl(hi) =
wihi−1t(n− i+ 1)

wi−1i(1− t) + wihi−1t(n− i+ 1)
(1 + δ1 + ηi−1 − δi−1 +O(ϵ2)) = hi(1 + δ1 + ηi−1 − δi−1 +O(ϵ2)).

We define ηi = δ1 + ηi−1 − δi−1 + O(ϵ2), hence, by using the triangle inequality and the upper
bounds on the relative errors introduced by the operations, we have

|ηi| ≤ |δ1|+ |ηi−1|+ |δi−1|+ O(ϵ2) ≤ 8ϵ + 2|ηi−1|+ O(ϵ2), i = 1, . . . , n.

Now, we can prove the statement by induction over i. The base case follows by the fact that
h0 = 1, therefore η0 = 0. Finally, the inductive step from i − 1 to i follows immediately from
the inductive hypothesis, that is |ηi−1| ≤ 23(2i−1 − 1)ϵ + O(ϵ2).

Proposition 9. For any t, w0, . . . , wn, P0, . . . , Pn ∈ F and r ∈ {1, . . . , n}, the relative errors of
the Ti in (9) satisfy

|fl(Ti(t))− Ti(t)|
|Ti|

≤
∑i

k=0 B
n
k (t)|Pkwk|∣∣∑i

k=0 B
n
k (t)Pkwk

∣∣
(

max
k=1,...,i

1

1− hk

23i(2i−1)+3i

)
ϵ+O(ϵ2), i = 1, . . . , n.

Therefore, the relative error in (20) for P (t) = Tn satisfies

E(t) ≤
∑n

k=0B
n
k (t)|Pkwk|∣∣∑n

k=0B
n
k (t)Pkwk

∣∣
(

max
k=1,...,n

1

1− hk

23n(2n − 1) + 3n

)
ϵ + O(ϵ2).

Proof. Denoting by τi the relative errors introduced by the computation of Ti, i = 0, . . . , n, we
first notice that

fl(Ti) = [1− hi(1 + ηi)]Ti−1(1 + τi−1)(1 + δ1) + hi(1 + ηi)Pi(1 + δ2)

= (1− hi)Ti−1

(
1− hiηi

1− hi

+ τi−1 + δ1 + O(ϵ2)

)
+ hiPi(1 + ηi + δ2 + O(ϵ2))

= Ti + (1− hi)Ti−1

(
− hiηi

1− hi

+ τi−1 + δ1 + O(ϵ2)

)
+ hiPi(ηi + δ2 + O(ϵ2)),

where |ηi| ≤ 23(2i − 1)ϵ + O(ϵ2) by Lemma 8 and δ1 and δ2 are the errors introduced by
the operations in the first and second addends, respectively, that are one product and one
sum each, plus one subtraction for the first addend only. Therefore, it follows from (22) that
|δ1|, |δ2| ≤ 3ϵ + O(ϵ2). Then, using the fact that fl(Ti)− Ti = Tiτi, the triangle inequality, and
the upper bounds on the relative errors introduced by the values hi and the operations, we
obtain

|Tiτi| ≤ (1− hi)|Ti−1|
(

hi|ηi|
1− hi

+ |δ1|
)

+ hi|Pi|(|ηi|+ |δ2|) + (1− hi)|Ti−1τi−1|+ O(ϵ2)

≤ [(1− hi)|Ti−1|+ hi|Pi|]
(

1

1− hi

23(2i − 1) + 3

)
ϵ + (1− hi)|Ti−1τi−1|+ O(ϵ2).

(35)

13

A comprehensive comparison of algorithms for evaluating rational Bézier curves

Recalling that hj = Bn
j wj

/∑j
k=0(B

n
kwk) [Woźny and Chudy, 2020], we can use recursively the

relation of Ti in (9) to express

(1− hi)|Ti−1| =
i∑

j=1

i−j∏
k=0

(1− hi−k)hj−1|Pj−1| =
i∑

j=1

i−j∏
k=0

(
1−

Bn
i−kwi−k∑i−k
l=0 B

n
l wl

)
Bn

j−1wj−1∑j−1
l=0 B

n
l wl

|Pj−1|

=
i∑

j=1

i−j∏
k=0

∑i−k−1
l=0 Bn

l wl∑i−k
l=0 B

n
l wl

Bn
j−1wj−1∑j−1
l=0 B

n
l wl

|Pj−1| =
∑i

j=1B
n
j−1|wj−1Pj−1|∑i
l=0B

n
l wl

,

and, by (35),

|Tiτi| ≤
∑i

k=0B
n
k (t)|Pkwk|∑i

k=0 B
n
k (t)wk

(
1

1− hi

23(2i − 1) + 3

)
ϵ + (1− hi)|Ti−1τi−1|+ O(ϵ2). (36)

Now, we can prove the statement by induction over i = 1, . . . , n and, to this end, we recall
Ti =

∑i
k=0 B

n
kwkPk/

∑i
k=0(B

n
kwk) [Woźny and Chudy, 2020]. The base case follows by the fact

that T0 = P0, therefore τ0 = 0. Finally, the inductive step from i − 1 to i follows from the
inductive hypothesis, that is,

|Ti−1τi−1| ≤
∑i−1

k=0 B
n
k (t)|Pkwk|∑i−1

k=0B
n
k (t)wk

(
max

k=1,...,i−1

1

1− hk

23(i− 1)(2i−1 − 1) + 3

)
ϵ + O(ϵ2),

together with (36) and

(1− hi)

∑i−1
k=0B

n
k (t)|Pkwk|∑i−1

k=0B
n
k (t)wk

=

∑i−1
k=0B

n
k (t)|Pkwk|∑i

k=0B
n
k (t)wk

≤
∑i

k=0 B
n
k (t)|Pkwk|∑i

k=0B
n
k (t)wk

.

2.4 Barycentric approach

In this case, we observe that the barycentric form of P in (18) can be expressed as in (31)
with N = M = n, fi = Qi, and ai = bi = ui/(t − ti), i = 0, . . . , n, therefore we can use once
again Theorem 7. However, the latter assumes that the values fi are floating-point numbers,
while the Qi are the result of a prepossessing step that leads to a set of perturbed initial data.
Consequently, we derive an upper bound on the relative error E in (20) via Theorem 7, while
also considering this difference.

Corollary 10. Assuming that the values Qi = P (ti), i = 0, . . . , n, are computed by evaluating
the rational Bézier curve P at ti through the implementation of the VS formula in (7) and
that the z(ti) are defined as in (19), then the relative error in (20) for P (t) computed by
implementing the barycentric formula in (18) satisfies

E(t) ≤
(

10n + 5 + max
j=0,...,n

U(Qj)

)∑n
i=0

∣∣uiQi

t−ti

∣∣∣∣∑n
i=0

uiQi

t−ti

∣∣ϵ + (10n + 3)

∑n
i=0

∣∣ ui

t−ti

∣∣∣∣∑n
i=0

ui

t−ti

∣∣ϵ + O(ϵ2),

where

U(Qi) =

∑n
i=0|Bn

i (ti)wiPi|
|
∑n

i=0 B
n
i (ti)wiPi|

(4n + 3) + 4n + 1, i = 0, . . . , n. (37)

14

A comprehensive comparison of algorithms for evaluating rational Bézier curves

Proof. Since the values Qi are computed with (7), we know from (34) that there exist θ0, . . . , θn ∈
R such that they satisfy fl(Qi) = Qi(1 + θi), i = 0, . . . , n, with |θi| ≤ U(Qi)ϵ+O(ϵ2) and U(Qi)
in (37). Moreover, in the computation of the z(ti) we first introduce at most 4n + 1 floating-
point relative errors in the VS algorithm to get the denominators

∑n
i=0 x

n−i
(
n
i

)
wi, and then we

perform at most other 2n− 1 products, which happens in the case of (1− t)n. This means that
there exist ζ0, . . . , ζn ∈ R such that the z(ti) satisfy fl(z(ti)) = z(ti)(1 + ζi), i = 0, . . . , n, with
|ζi| ≤ U(z(ti))ϵ + O(ϵ2) and

U(z(ti)) = 6n.

Also, we know that the computation of ui/z(ti) =
∏

k ̸=i
1

ti−tk
introduces at most 3n floating-

point operations [Fuda et al., 2022, Lemma 1], which, together with the previous equation,
leads to the existence of µ0, . . . , µn ∈ R such that the ui satisfy fl(ui) = ui(1 +µi), i = 0, . . . , n,
with |µi| ≤ U(ui)ϵ + O(ϵ2) and

U(ui) = U(z(ti)) + 3n + 1 = 9n + 1.

Finally, the statement follows by a corollary of Theorem 7 [Fuda et al., 2022, Corollary 1] that,
by also considering the initial errors in the data Qi, gives

E(t) ≤
(
n+ 4 + max

i=0,...,n
U(ui) + max

j=0,...,n
U(Qj)

)∑n
i=0

∣∣uiQi

t−ti

∣∣∣∣∑n
i=0

uiQi

t−ti

∣∣ϵ+
(
n+ 2 + max

i=0,...,n
U(ui)

)∑n
i=0

∣∣ ui

t−ti

∣∣∣∣∑n
i=0

ui

t−ti

∣∣ϵ+O(ϵ2).

2.5 Summary

By defining the conditioning functions

κP (t) =

∑n
k=0B

n
k (t)|Pkwk|∣∣∑n

k=0B
n
k (t)Pkwk

∣∣ , κR(t) =

∑n
k=0A

n
k(t)|Rkvk|∣∣∑n

k=0 A
n
k(t)Rkvk

∣∣ , and κQ(t) =

∑n
i=0

∣∣uiQi

t−ti

∣∣∣∣∑n
i=0

uiQi

t−ti

∣∣ ,
(38)

and recalling that

Λn(t) =

∑n
i=0

∣∣ ui

t−ti

∣∣∣∣∑n
i=0

ui

t−ti

∣∣ (39)

is already known as the Lebesgue function, we proved that the relative error E in (20) can be
bounded as

E(t) ≤

κP (t)(3n
2 + 5n)ϵ+O(ϵ2), P (t) = Pn

0 in (6),

κP (t)(4n+ 3)ϵ+ (4n+ 1)ϵ+O(ϵ2), P (t) in (7),

κP (t)(3n+ 3)ϵ+ (3n+ 1)ϵ+O(ϵ2), P (t) in (8),

κP (t)

(
max

k=1,...,n

1

1− hk
23n(2n − 1) + 3n

)
ϵ+O(ϵ2), P (t) = Pn

0 in (9),

κR(t)

(
3n2 + 5n+ max

j=0,...,n
U(vj) + max

k=0,...,n
U(Rk)

)
ϵ+O(ϵ2), P (t) = Rn

0 in (12)–(14),

κQ(t)

(
10n+ 5 + max

j=0,...,n
U(Qj)

)
ϵ+ Λn(t)(10n+ 3)ϵ+O(ϵ2), P (t) in (18).

Hence, we expect that all methods that use the Bernstein basis in (2), namely those defined
by the formulas in (6)–(8) and (9), behave similarly in terms of numerical stability. The only
exception might arise with the latter method if any of the hk, k = 1, . . . , n, is very close to 1.

15

A comprehensive comparison of algorithms for evaluating rational Bézier curves

However, Woźny and Chudy [Woźny and Chudy, 2020] have already addressed this issue by
suggesting to use the relation

1− hk =
hk

hk−1

wk−1k(1− t)

wkt(n− k + 1)
.

Regarding instead the methods that employ a different basis, such as the Wang–Ball and the
barycentric algorithms, even under the assumption that all the preprocessing steps are stable,
there are scenarios where κR or κQ are bigger than κP , or vice versa. As a consequence, these
algorithms may exhibit instability even when the formulas in (6)–(9) are stable. However, for
the barycentric form, instability is less likely to occur if Chebyshev nodes are chosen. In fact,
multiplying both numerator and denominator of the function κQ by

∣∣∑n
i=0 uiQi/(t − ti)

∣∣, we
can see that

κQ(t) =

∑n
i=0

∣∣uiQi

t−ti

∣∣∣∣∑n
i=0

ui

t−ti

∣∣ 1

|P (t)|
≤ max

i=0,...,n
|Qi|Λn(t)

1

|P (t)|
≤ max

i=0,...,n
|Pi|Λn(t)κP (t)

∑n
k=0B

n
k (t)|wk|∑n

k=0 B
n
k (t)|Pkwk|

.

In particular, if mini=0,...,n|Pi| ≠ 0, then

κQ(t) ≤ κP (t)Λn(t)
maxi=0,...,n|Pi|
mini=0,...,n|Pi|

. (40)

Moreover, it is well known [Smith, 2006] that the Lebesgue function grows only logarithmically
in n for Chebyshev nodes. Therefore, if κP has a good behaviour, then we can expect the
method to be always stable when the ratio between the biggest and the smallest control points is
small. On the contrary, the Lebesgue function related to equidistant nodes exhibits exponential
growth in n [Smith, 2006], hence we can have unstable results even for moderate values of n with
uniformly distributed nodes. We will show that these scenarios can indeed occur in Section 4
through numerical experiments.

3. Efficiency analysis

Rational de Casteljau (RDC) - Farin de Casteljau (FDC). We recall that evaluating
the numerator and the denominator of a rational Bézier curve as in (5) and then dividing the
results is equivalent to evaluating the spatial curve (3) and applying the central projection on
the final result. To that, for the RDC, we need to precompute the points P̂i as in Algorithm 1,
and evaluate P̂ (t) as in Algorithm 2. The FDC algorithm is a more robust alternative of the
RDC algorithm described in (6) and implemented optimally in Algorithm 3.

Rational VS (RVS) - Rational Horner-Bézier (RHB). In order to optimise the algo-
rithms and to compute them in linear time, we precompute the factors

(
n
k

)
wkPk and

(
n
k

)
wk as

in Algorithm 4, and then we evaluate P as in Algorithm 5 and Algorithm 6, respectively.

Linear time geometric (LTG). Although it is not displayed in Formula 9, for numerical
reasons, the authors deemed necessary to distinguish the cases t ∈ [0, 0.5] and t ∈ (0.5, 1] as in
Algorithm 7.

Barycentric algorithm with Chebyshev nodes (CHE) - with uniform nodes (UNI).
To get the data of the barycentric form, we can use any of the previously cited algorithms. We
choose to adapt the RVS algorithm as in Algorithm 15 to get ti, Qi, and z(ti)) simultaneously.
We recall that we can get z(ti) as in (19). The data of the barycentric form, such as the

16

A comprehensive comparison of algorithms for evaluating rational Bézier curves

Table 1: Comparison between the number of floating–point operations for the preprocessing
(top) and the main algorithm (bottom) for each method.

method preprocessing

RDC d(n + 1)

FDC 0

RVS (d + 1)(n − 1) + 2d

RHB (d + 1)(n − 1) + 2d

LTG 0

CHE (n + 1)(2dn + d + 2n + 8 + 2 log2(n) + 2h) + (d + 1)(n − 1) + 2d

UNI (n + 1)(2dn + d + 2n + 7 + 2 log2(n)) + (d + 1)(n − 1) + 2d

RWB (n even) 2dn2 + 4dn − 2d + 1
2
n

RWB (n odd) 2dn2 + 4dn − 2d + 1
2
n − 1

2

RBF O(dn logn)

method add/sub mult div total

RDC 1
2
dn(n + 1) + 1 dn(n + 1) d 3

2
dn2 + 3

2
dn + d + 1

FDC 1
2
(d + 2)n(n + 1) + 1 1

2
(2d + 3)n(n + 1) 0 3

2
dn2 + 3

2
dn + 5

2
n2 + 5

2
n + 1

RVS (d + 1)n + 1 (d + 1)n d + 1 2dn + d + 2n + 2

RHB (d + 1)(n − 1) + d + 2 2dn + 3n d 3dn + d + 4n + 1

LTG (d + 2)n + 1 2(d + 2)n n + 1 3dn + 7n + 2

CHE (d + 2)(n + 1) d(n + 1) n + 1 + d 2dn + 3d + 3n + 3

UNI (d + 2)(n + 1) d(n + 1) n + 1 + d 2dn + 3d + 3n + 3

RWB (n even) 3
2
n(d + 1) + 1 3

2
n(2d + 2) 3

2
n 9

2
dn + 6n + 1

RWB (n odd) 1
2
(3n − 1)(d + 1) + 1 1

2
(3n − 1)(2d + 2) 1

2
(3n − 1) 9

2
dn − 3

2
d + 6n − 1

RBF (n even) n
2
(d + 4 log2 n + 2) + d + 1 n

2
(2d + 8 log2 n + 2) + d d 6n log2(n) + 2dn + 3d + 2n + 1

RBF (n odd) n−1
2

(d + 4 log2 n + 2) + 2d + 2 n−1
2

(2d + 6 log2 n + 2) + 2d + 2 log2 n + 1 d 8n log2(n) + 2dn + 7
2
d + 2n − 4 log2 n + 1

interpolation points, the weights, and the nodes, are precomputed in Algorithm 16. We present
two ways of evaluating the barycentric form. Algorithm 17 evaluates the barycentric form
in (18) in the classical way. However, since the distributions of the nodes are symmetric, we
can compute P (t) and P (1− t) at the same time. For instance, if we want to get the values of
P (t) for t = k/M, k = 0, . . . ,M , then the number of flops by using Algorithm 18 is M(n+ 1)/2
less than using Algorithm 17.

Rational Wang–Ball (RWB). The weights and the control points of (10) are precomputed
in Algorithm 9. Despite its recursive appearance in (13)–(14), the evaluation of a rational
Wang–Ball curve is done in linear time in Algorithm 10.

Rational Bernstein–Fourier (RBF). The algorithm for evaluating P̂ is presented in Algo-
rithm 13. However, for a large number of evaluations, we can also use Algorithm 14 to compute
P̂ (t) and P̂ (1− t) in parallel in order to have an optimal runtime. In the algorithms, we assume
that the computation of xn, x ∈ R, in (19) is done with a logarithmic algorithm in the worst
case, that is, it involves 2 log2(n) multiplications. The computation of zn, z ∈ C, in (17) can
be done using de Moivre’s formula zn = rn(cos(nθ) + i sin(nθ), θ = arg z and r = |z|. However,
since a complex multiplication involves 6 real operations, here we assume that it is 12 log2(n).

We compare the number of floating–point operations in the implementation of each method
in Table 1. We denote by d the dimension of the space, n the degree of the curve, and let h be
the cost of evaluating a trigonometric function (cos, sin, tan).

17

A comprehensive comparison of algorithms for evaluating rational Bézier curves

3 5 7 9 11 13 15 17 19
n

0.2

0.4

0.6

0.8

1.0
se
c

1e−3 (a)

3 5 7 9 11 13 15 17 19
n

0.8

1.0

1.2

1.4

1.6

1.8
1e−4 (b)

0 200 400 600
M

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1e−4 (c)

0 50 100 150 200 250
M

0.0

0.5

1.0

1.5

2.0

2.5

3.0 1e−5 (d)

RDC FDC RVS RHB LTG CHE UNI RWB RBF

Figure 1: Runtime of all algorithms for computing a rational Bézier curve with Pi = 100i
(
1
1

)
+
(
1
1

)
and wi = i mod 2 + 1. We first consider M = 2500 evaluation points for n = 3, 5, 7, . . . , 19 (a)
and provide a zoom-in view on the fastest methods (b). Then, we fix the degree at n = 20 and
vary the number of evaluation points M = 1, 50, 100, 150, . . . , 750 (c), with a zoom-in view on
the domain [1, 250] (d).

4. Numerical experiments

We implemented all the methods in C++ and computed the exact value P (t) of the Bézier curve
in multiple-precision (1024 bit) floating-point arithmetic with the MPFR library [Fousse et al.,
2007]. Moreover, we used the Eigen module [Guennebaud et al., 2010] to compute the Inverse
Fast Fourier Transform in the Bernstein–Fourier algorithm. The results are obtained using a
Ubuntu system on a Dell computer with 8 cores i7-10510U CPU 1.80GHz and 16 GiB of RAM.
The codes are compiled with CMake compiler optimisation flag -O3.

4.1 Efficiency comparison

To compare the efficiency of the different algorithms, we run a first experiment with respect to
the degree n of a rational Bézier curve. This is important because, although cubic curves are
more familiar and commonly used, higher degree curves are particularly interesting for achieving
more precision and smoothness, especially for complex shapes. Therefore, we evaluate rational
Bézier curves of degree n = 3, 5, 7, . . . , 19 with control points defined as Pi = 100i

(
1
1

)
+
(
1
1

)
and weights wi = i mod 2 + 1, i = 0, . . . , n, at M = 2500 equidistant evaluation points in
[0, 1]. The results are obtained from averaging the result of 1000 reruns. Figure 1 displays the
runtime of all algorithms (a), clearly showing that the RVS, RHB, UNI, and CHE algorithms
outperform all the others4. It is also evident (b) that the algorithms that use the barycentric
form are faster than those employing the Horner-scheme evaluation, with the difference becom-
ing more significant as n increases. This loss of efficiency in the RVS and RHB algorithms is
due to the computation of large binomial coefficients with integer arithmetic, which becomes
computationally expensive for big values of n.

In the second experiment, we consider the same setup as before, but perform the com-
parison with respect to the number of evaluation points M . Specifically, we keep the con-
trol points and weights consistent with the previous experiment and we set n = 20 and
M = 1, 50, 100, 150, . . . , 750. The results are shown in Figure 1 (c) and reconfirm that RVS,
RHB, UNI, and CHE are the fastest. However, looking closer in the zoom-in plot (d), we notice
that the RVS and RHB algorithms win over the UNI and CHE algorithms only if M < 200,

4Bezerra [2013] shows that the RBF algorithm is faster than the RVS for n < 8, but this does not happen
in our experiment, possibly due to a different implementation technique.

18

A comprehensive comparison of algorithms for evaluating rational Bézier curves

10−17

10−15

10−13
10−11

10−9
10−7

10−5

10−3
E(
t)

(a) (b)

10−16

10−15

10−14

10−13
(c) (d)

0.0 0.5 1.0
t

100

102

104

106

108

1010

1012

1014

co
nd
iti
on

 fu
nc
tio

n

0.0 0.5 1.0
t

0.0 0.5 1.0
t

100

101

102

103

104

0.0 0.5 1.0
t

RDC FDC RVS RHB LTG CHE UNI RWB RBF

Figure 2: Relative errors of all algorithms (top) for computing a rational Bézier curve and
their related conditioning function (bottom) on a logarithmic scale. We first consider n = 50,
Pi =

(
xi

yi

)
for xi and yi in (41), and wi = i mod 2 + 1, and we observe the results related to

the x-coordinate (a) and y-coordinate (b). Then, we set n = 4, P0 =
(

10
−100

)
, P1 =

(
20
200

)
, P2 =(

30
−200

)
, P3 =

(
40
101

)
, P4 =

(
50
101

)
and wi = 1, i = 0, . . . , n, and we see the results for the x-

coordinate (c) and y-coordinate (d). The black line represents the machine epsilon in double
precision.

otherwise the situation is reversed. This effect arises from the quadratic time preprocessing
step required by the barycentric algorithms. Although the latter is a one-time operation, it is
relevant only for few evaluations, while it becomes negligible as M grows.

4.2 Numerical stability comparison

To compare the numerical stability of all the algorithms, we evaluate the relative error E in (20)
for 1000 equidistant evaluation points in [0, 1] using the various implementations of fl(P (t)) in
double precision. If the results are on the order of the machine epsilon, approximately 10−16,
then we can conclude that the method is stable, otherwise it suggests instability.

In the first experiment, we consider a rational Bézier curve of degree n = 50 with control
points Pi =

(
xi

yi

)
, i = 0, . . . , n, for

xi =

{
1, i = 0, . . . , 9 and i = 41, . . . , n

106, i = 10, . . . , 40
and yi = sin

iπ

n + 1
, (41)

and weights wi = i mod 2 + 1. In Figure 2 (a,b), we observe that all the methods defined via
the Bernstein basis are stable, while the others exhibit numerical problems. In particular, the
CHE, UNI, RWB, and RBF algorithms are unstable with respect to the x-coordinate (a), as
well as for the y- coordinate (b), except for the CHE algorithm. Although we cannot determine
the cause of instability in the RBF algorithm, our theoretical results in Section 2 can explain

19

A comprehensive comparison of algorithms for evaluating rational Bézier curves

the other cases. Indeed, we proved that the relative error of the RWB algorithm depends on
the conditioning functions κR, while those of CHE and UNI on κQ. In this case, even though
the initial data give a good conditioning function related to the Bernstein basis, i.e. κP (t) = 1,
the conversion to a different basis leads to unfavorable behaviour for both κR and κQ, as shown
in Figure 2 (bottom). Moreover, it is worth noting that, as expected, the CHE algorithm
exhibits instability with respect to the x-coordinate because the ratio between the biggest and
the smallest |xi| is 106. However, under circumstances where this ratio is not big, the CHE
algorithm is typically stable, even for large values of n.

Finally, we want to examine a more realistic experiment, thus we take a low degree curve
by setting n = 4. On the one hand, we observe in Figure 2 that the relative error related
to the x-coordinate (c) is perfectly stable, with all the conditioning functions small. On the
other hand, all the relative errors related to the y-coordinate (d) exhibit spikes in some parts
of the domain, reaching an order of 10−13. This behaviour is also reflected in the conditioning
functions. However, where these spikes occur, the values of Py(t) are very small because the
curve is crossing the t-axis, therefore this may not be a stability issue, but rather a consequence
of dividing by very small values in Ey(t) in (20). However, for our 1000 equidistant evaluation
points, the minimum absolute value of Py(t) is 0.13424 in the domain of the first spike and
0.3116 for the second, thus indicating that we are not so close to the values where Py(t) = 0.
Furthermore, plotting the absolute errors leads to a similar behaviour without these spikes, but
still with magnitudes between 10−14 and 10−13 for all methods except the barycentric form with
uniform nodes. This latter remains stable, as its conditioning function κQ is small, apart from
the initial spike, and its nodes are far from the instability regions of the RVS algorithm. In
contrast, Chebyshev nodes compromise the stability of the method due to the computation of
one interpolation point with the RVS algorithm where it is unstable, specifically for the node
in [0.1, 0.2]. Furthermore, while both uniform and Chebyshev nodes include t = 0.5, the RVS
is exact at this point with a relative error of 0, thus preserving the stability of the barycentric
method with uniform nodes. However, the computation of this node with the Chebyshev
formula is not exact, resulting in perturbed data.

5. Conclusion

We conducted a comprehensive comparison of the most common algorithms used to evaluate
a rational Bézier curve in terms of both efficiency and numerical stability. Our analysis and
numerical experiments reveal that the fastest algorithms are those employing a Horner-like
scheme for the evaluation and those defined in barycentric form. Specifically, while the former
is advantageous for scenarios that require the evaluation of the curve at few evaluation points,
not exceeding 200, the barycentric form becomes the preferred choice when dealing with a larger
number of evaluation points. This is because the preprocessing step required by the barycentric
algorithms is executed only once, thus its runtime becomes negligible for a significant number
of evaluations.

Regarding the numerical stability, we derived an upper bound on the relative error of the
different methods and showed, both theoretically and empirically, that it depends on certain
conditioning functions. Specifically, algorithms that use the Bernstein basis depend on the
same conditioning function, therefore they have consistent numerical behaviours. Instead,
conversion to another basis can lead to different relative errors. In fact, there are scenarios
where all algorithms are stable, except from those given by the Wang–Ball and the barycentric
basis. However, we proved that, if the Bernstein basis gives a good conditioning function, then
also the basis related to the barycentric algorithm with Chebyshev nodes behaves well, as long
as the ratio between the largest and smallest control points Pi is small. Lastly, even classical
algorithms based on the Bernstein basis may fail if the associated conditioning function is

20

A comprehensive comparison of algorithms for evaluating rational Bézier curves

large, particularly when control points have different signs. In such cases, it is possible that
the conversion to the barycentric form with nodes located away from instability areas can yield
better results.

Acknowledgements

This work was supported by the Swiss National Science Foundation (SNSF) under project No
188577 and the European Union’s Horizon 2020 research and innovation programme under the
Marie Sk lodowska–Curie grant agreement No 860843.

References

[1] Bezerra, L. H. [2012]. Vandermonde factorizations of a regular Hankel matrix and their
application to the computation of Bézier curves, 10.1137/100800300, SIAM Journal on
Matrix Analysis and Applications 33(2): 411–432.

[2] Bezerra, L. H. [2013]. Efficient computation of Bézier curves from their Bernstein–Fourier
representation, 10.1016/j.amc.2013.05.079, Applied Mathematics and Computation
220: 235–238.

[3] Bezerra, L. H. and Sacht, L. K. [2011]. On computing Bézier curves by Pascal matrix
methods, 10.1016/j.amc.2011.05.007, Applied Mathematics and Computation
217(24): 10118–10128.

[4] Bézier, P. [1966]. Définition numérique des courbes et surfaces, Automatisme 11: 625–632.

[5] Bézier, P. [1967]. Définition numérique des courbes et surfaces (ii), Automatisme 12: 17–21.

[6] Boehm, W. and Müller, A. [1999]. On de Casteljau’s algorithm,
10.1016/S0167-8396(99)00023-0, Computer Aided Geometric Design 16(7): 587–605.

[7] de Casteljau, P. [1959]. Outillages methodes calcul, Technical report, André Citroën
Automobile SA.

[8] Dejdumrong, N. [2006]. Rational DP-Ball curves, International Conference on Computer
Graphics, Imaging and Visualisation, CGIV’06, pp. 478–483.

[9] Dejdumrong, N. [2008]. Efficient algorithms for non-rational and rational Bézier curves,
International Conference on Computer Graphics, Imaging and Visualisation, CGIV’08,
pp. 109–114.

[10] Dejdumrong, N., Phien, H., Tien, H. and Lay, K. [2001]. Rational Wang–Ball curves,
10.1080/00207390110038358, International Journal of Mathematical Education in
Science and Technology 32(4): 565–584.

[11] Delgado, J. and Peña, J. M. [2003]. A shape preserving representation with an evaluation
algorithm of linear complexity, 10.1016/S0167-8396(02)00190-5, Computer Aided
Geometric Design 20(1): 1–10.

[12] Delgado, J. and Peña, J. M. [2004]. A shape preserving representation for rational curves
with efficient evaluation algorithm, Advances in Geometric Modeling, John Wiley &
Sons, Ltd, chapter 3, pp. 39–54.

[13] Farin, G. [1983]. Algorithms for rational Bézier curves, 10.1016/0010-4485(83)90171-9,
Computer-Aided Design 15(2): 73–77.

21

http://doi.org/10.1137/100800300
http://doi.org/10.1016/j.amc.2013.05.079
http://doi.org/10.1016/j.amc.2011.05.007
http://doi.org/10.1016/S0167-8396(99)00023-0
http://doi.org/10.1080/00207390110038358
http://doi.org/10.1016/S0167-8396(02)00190-5
http://doi.org/10.1016/0010-4485(83)90171-9

A comprehensive comparison of algorithms for evaluating rational Bézier curves

[14] Farin, G. [2001]. Curves and Surfaces for CAGD: A Practical Guide, The Morgan
Kaufmann Series in Computer Graphics and Geometric Modeling, 5th edn, Morgan
Kaufmann, San Francisco.

[15] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P. and Zimmermann, P. [2007]. MPFR: A
multiple-precision binary floating-point library with correct rounding,
10.1145/1236463.1236468, ACM Transactions of Mathematical Software 33(2).

[16] Fuda, C., Campagna, R. and Hormann, K. [2022]. On the numerical stability of linear
barycentric rational interpolation, 10.1007/s00211-022-01316-w, Numerische
Mathematik 152: 761–786.

[17] Goldman, R. [2003]. Pyramid Algorithms, The Morgan Kaufmann Series in Computer
Graphics, Morgan Kaufmann, San Francisco, chapter 5, pp. 187–306.

[18] Guennebaud, G., Jacob, B. et al. [2010]. Eigen v3, http://eigen.tuxfamily.org.

[19] Hu, S.-M., Wang, G.-Z. and Jin, T.-G. [1996]. Properties of two types of generalized Ball
curves, 10.1016/0010-4485(95)00047-X, Computer-Aided Design 28(2): 125–133.

[20] Phien, H. N. and Dejdumrong, N. [2000]. Efficient algorithms for Bézier curves,
10.1016/S0167-8396(99)00048-5, Computer Aided Geometric Design 17(3): 247–250.

[21] Ramanantoanina, A. and Hormann, K. [2021]. New shape control tools for rational Bézier
curve design, 10.1016/j.cagd.2021.102003, Computer Aided Geometric Design
88: 102003.

[22] Salzer, H. E. [1972]. Lagrangian interpolation at the Chebyshev points xn,v ≡ cos(vπ/n),
v = 0(1)n; some unnoted advantages, 10.1093/comjnl/15.2.156, The Computer Journal
15(2): 156–159.

[23] Schumaker, L. L. and Volk, W. [1986]. Efficient evaluation of multivariate polynomials,
10.1016/0167-8396(86)90018-X, Computer Aided Geometric Design 3(2): 149–154.

[24] Smith, S. J. [2006]. Lebesgue constants in polynomial interpolation., Annales
Mathematicae et Informaticae 33: 109–123.

[25] Trefethen, L. N. and Bau, D. [1997]. Numerical Linear Algebra, SIAM, Philadelphia.

[26] Wang, G. [1987]. Ball curve of high degree and its geometric properties, Applied
Mathematics: A Journal of Chinese Universities 2(1): 126–140.

[27] Warren, J. D. [1993]. An efficient algorithm for evaluating polynomials in the Pòlya basis,
in H. Hagen, G. E. Farin, H. Noltemeier and R. F. Albrecht (eds), Geometric Modelling,
Dagstuhl, Germany, 1993, Vol. 10 of Computing Supplementa, Springer, pp. 357–361.

[28] Woźny, P. and Chudy, F. [2020]. Linear-time geometric algorithm for evaluating Bézier
curves, 10.1016/j.cad.2019.102760, Computer-Aided Design 118: 102760.

22

http://doi.org/10.1145/1236463.1236468
http://doi.org/10.1007/s00211-022-01316-w
http://doi.org/10.1016/0010-4485(95)00047-X
http://doi.org/10.1016/S0167-8396(99)00048-5
http://doi.org/10.1016/j.cagd.2021.102003
http://doi.org/10.1093/comjnl/15.2.156
http://doi.org/10.1016/0167-8396(86)90018-X
http://doi.org/10.1016/j.cad.2019.102760

A comprehensive comparison of algorithms for evaluating rational Bézier curves

A. Appendix: Algorithms

A.1 de Casteljau algorithm

Algorithm 1 toHomogeneous(P0, . . . , Pn, w0, . . . , wn)

for k ← 0(1)n do
P̂k ← (wkPk, wk)

return P̂0, . . . , P̂n

Algorithm 2 deCasteljau(P0, . . . , Pn, t)

for k ← 0(1)n do
P̂k ← Pk

t1 ← 1− t
for r ← 1(1)n do

for k ← 0(1)(n− r) do
P̂k ← P̂kt1 + tP̂k+1.

P ← proj(P̂0) ▷ central projection
return P

Algorithm 3 RationalDeCasteljau(P0, . . . , Pn, w0, . . . , wn, t)

t1 ← 1− t
for r ← 1(1)n do

for k ← 0(1)(n− r) do
u← t1wk

v ← twk+1

wk ← u + v
c1 ← u/wk

c2 ← 1− c1
Pk ← Pkc1 + c2Pk+1.

return P0

A.2 VS algorithm

Algorithm 4 Preprocessing of VS and HornBez(P0, . . . , Pn, w0, . . . , wn)

b← 1
P0 ← w0P0

Pn ← wnPn

for k = 1(1)(n− 1) do
b← b(n + 1− k)
b← b/k
wk ← bwk

Pk ← wkPk

return (P0, . . . , Pn, w0, . . . , wn)

23

A comprehensive comparison of algorithms for evaluating rational Bézier curves

Algorithm 5 VS(P0, . . . , Pn, w0, . . . , wn, t)

if t ≤ 1/2 then
s← t/(1− t)
d← wn

N ← Pn

for k = 1(1)n do
nk ← n− k
N ← Ns + Pnk

d← ds + wnk

else if t > 1/2 then
s← (1− t)/t
d← w0

N ← P0

for k = 1(1)n do
N ← Ns + Pk

d← ds + wk

return N/d

A.3 Horner Bézier algorithm

Algorithm 6 HornBez(P0, . . . , Pn, w0, . . . , wn, t)

s← 1− t
tk ← 1
d← sw0

N ← sP0

for k ← 1(1)(n− 1) do
tk ← tkt
N ← (N + tkPk)s
d← (d + tkwk)s

tk ← tkt
N ← N + tkPn

d← d + tkwn

return N/d

24

A comprehensive comparison of algorithms for evaluating rational Bézier curves

A.4 Geometric algorithm

Algorithm 7 Geometric(P0, . . . , Pn, w0, . . . , wn, t)

h← 1
u← 1− t
n1 ← n + 1
N ← P0

if t ≤ 1/2 then
u← t/u
for k ← 1(1)n do

h← hu(n1 − k)wk

h← h/(kwk−1 + h)
h1 ← 1− h
N ← h1N + hPk

else if t > 1/2 then
u← u/t
for k ← 1(1)n do

h← h(n1 − k)wk

h← h/(kuwk−1 + h)
h1 ← 1− h
N ← h1N + hPk

return N

A.5 Wang–Ball algorithm

Algorithm 8 AC coefficients(n)

p2 ← 1
M ← 1n+1 ▷ identity matrix of size (n + 1)× (n + 1)
Ni ← n− 2− 2i
for i← 0(1)(⌈n/2⌉ − 1) do

for k ← 0(1)n do
if i < k and Ni ≥ 0 then

Mk,i ←Mk−1,i(Ni − k + i− 1)
Mk,i ←Mk,i/(k − i)

for k ← 0(1)n do
Mk,i ←Mk,ip2
Mn−k,n−i ←Mk,i

p2 ← 2p2

return M

25

A comprehensive comparison of algorithms for evaluating rational Bézier curves

Algorithm 9 toWangBall(P0, . . . , Pn, w0, . . . , wn)

(P̂0, . . . , P̂n)← toHomogeneous(P0, . . . , Pn, w0, . . . , wn)
for i← 0(1)n do

R̂i ← 0

b← 1
c← 1
R̂0 ← P̂0

R̂n ← P̂n

M ←AC coefficients(n)
k ← 1
while k ≤ n− k do

b← b(n− k + 1)/k
c← c/2
R̂k ← (bP̂k − ⟨Mk, (R̂0, . . . , R̂n)⟩)c ▷ ⟨a, b⟩ is a scalar product
if k = n− k then

stop

K ← n− k
R̂K ← (bP̂K − ⟨MK , (R̂0, . . . , R̂n)⟩)c
k ← k + 1

for i← 0(1)n do
Ri ← proj(R̂i)
vi ← R̂z

i ▷ z-coordinate of R̂i

return (R0, . . . , Rn, v0, . . . , vn)

26

A comprehensive comparison of algorithms for evaluating rational Bézier curves

Algorithm 10 WangBall(R0, . . . , Rn, v0, . . . , vn, t)

k ← n
J ← 0
s← 1− t
while k > 2 do

if k is odd then
k1 ← (k − 1)/2
k2 ← (k + 1)/2
a← svk1
b← tvk2
vk1 ← a + b
Rk1 ← (Rk1a + bRk2)/vk1
if J = 0 then

J ← k2 + 1

else
k2 ← k/2
if J = 0 then

J ← k2 + 1

a← svk2−1

b← tvk2
vk2−1 ← a + b
Rk2−1 ← (Rk2−1a + bRk2)/vk2−1

a← svk2
b← tvJ
vk2 ← a + b
Rk2 ← (Rk2a + bRJ)/vk2
J ← J + 1

k ← k − 1

a← sv0
b← tv1
c← sv1
d← tvn
wq ← a + b
wr ← c + d
e← swq

f ← twr

ww ← e + f
Q← (R0a + bR1)/wq

V ← (R1c + dRn)/wr

R← (Qe + fV)/ww

return R

A.6 Bernstein–Fourier algorithm

Algorithm 11 RealProduct(u, v)

a← Re(u) Re(v)
b← Im(u) Im(v)
return a− b

27

A comprehensive comparison of algorithms for evaluating rational Bézier curves

Algorithm 12 ToHomogeneousAndIfft(P0, . . . , Pn, v0, . . . , vn)

for i← 0(1)n do
Ŝi ← (viPi, vi)

(S0, . . . , Sn)← ifft(S0, . . . , Sn)
return (S0, . . . , Sn)

Algorithm 13 BernsteinFourier(S0, . . . , Sn, ζ1, . . . , ζn, t)

p← 0
t1 ← 1− t
if n is even then

N ← n/2 + 1
else

N ← (n + 1)/2

for i← 1(1)(N − 1) do
u← ζit + t1
u← pow(u, n)
p← p+RealProduct(u,Qi)

p← 2p + Q0

if n is odd then
u← 1− 2t
u← pow(u, n)
p← p + uQN

return proj(p)

Algorithm 14 BernsteinFourier 2(S0, . . . , Sn, ζ1, . . . , ζn, t)

pt ← 0
ps ← 0
t1 ← 1− t
if n is even then

N ← n/2 + 1
else

N ← (n + 1)/2

for i← 1(1)(N − 1) do
u← ζit + t1
u← pow(u, n)
pt ← pt+RealProduct(u,Qi)
u← u/ωi

ps ← ps+RealProduct(u,Qi)

pt ← 2pt + Q0

ps ← 2ps + Q0

if n is odd then
u← 1− 2t
u← pow(u, n)
pt ← pt + uQN

ps ← ps − uQN

return (proj(pt), proj(ps))

28

A comprehensive comparison of algorithms for evaluating rational Bézier curves

A.7 Barycentric form

Algorithm 15 AdaptedVS(P0, . . . , Pn, w0, . . . , wn, t)

c← 1
if t ≤ 1/2 then

t1 ← 1− t
s← t/t1
c← pow(t1, n)
d← ωn

N ← Pn

for k = 1(1)n do
nk ← n− k
N ← Ns + Pnk

d← ds + wnk

else if t > 1/2 then
s← (1− t)/t
c← pow(t, n)
d← ω0

N ← P0

for k = 1(1)n do
N ← Ns + Pk

d← ds + wk

return {N/d, cd}

Algorithm 16 ToBarycentric(P0, . . . , Pn, w0, . . . , wn)

b← 1
sgn← 1
(P0, . . . , Pn, w0, . . . , wn)←Preprocessing of VS and HornBez(P0, . . . , Pn, w0, . . . , wn)
for k = 0(1)n do

if UNIFORM then
tk ← k/n
Qk, z ← AdaptedVS(P0, . . . , Pn, w0, . . . , wn, tk)
uk ← sgn bz
b← b(n + 1− (k + 1))
b← b/(k + 1)

else if CHEBYSHEV then
tk ← cos(kπ/n)
Qk, z ← AdaptedVS(P0, . . . , Pn, w0, . . . , wn, tk)
b← 1
if k = 0 or k = n then

b← 0.5
uk ← sgn bz

sgn← − sgn

return Q0, . . . , Qn, u0, . . . , un, t0, . . . , tn

29

A comprehensive comparison of algorithms for evaluating rational Bézier curves

Algorithm 17 Barycentric(Q0, . . . , Qn, u0, . . . , un, t0, . . . , tn, t)

Q← 0
d← 0
for k ← 0(1)n do

u← t− tk
if u = 0 then return Qk

u← uk/u
Q← Q + uQk

d← d + u

Q← Q/d
return Q

Algorithm 18 Barycentric2(Q0, . . . , Qn, u0, . . . , un, t0, . . . , tn, t)

Q1 ← 0
d1 ← 0
Q2 ← 0
d2 ← 0
for k ← 0(1)n do

u← t− tk
nk ← n− k
if u = 0 then return {Qk, Qnk

}
v ← unk

/u
u← uk/u
Q1 ← Q1 + uQk

d1 ← d1 + u
Q2 ← Q2 + vQnk

d2 ← d2 + v

Q1← Q1/d1
Q2← Q2/d2
return {Q1, Q2}

30

	Introduction
	Rational de Casteljau algorithms
	Horner-like algorithms
	Geometric approach
	Wang–Ball algorithm
	Bernstein–Fourier algorithm
	Barycentric algorithm

	Numerical stability
	Convex combinations
	Horner schemes
	Geometric approach
	Barycentric approach
	Summary

	Efficiency analysis
	Numerical experiments
	Efficiency comparison
	Numerical stability comparison

	Conclusion
	Appendix: Algorithms
	de Casteljau algorithm
	VS algorithm
	Horner Bézier algorithm
	Geometric algorithm
	Wang–Ball algorithm
	Bernstein–Fourier algorithm
	Barycentric form

