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Abstract
Bézier curves are an essential tool for curve design. Due to their properties, common opera-
tions such as translation, rotation, or scaling can be applied to the curve by simply modifying
the control polygon of the curve. More flexibility, and thus more diverse types of curves, can
be achieved by associating a weight with each control point, that is, by considering rational
Bézier curves. As shown by Ramanantoanina and Hormann [2021], additional and more direct
control over the curve shape can be achieved by exploiting the correspondence between the
rational Bézier and the interpolating barycentric form and by exploring the effect of changing
the degrees of freedom of the latter (interpolation points, weights, and nodes). In this paper,
we explore similar editing possibilities for closed curves, in particular for the rational extension
of the periodic Bézier curves that were introduced by Sánchez-Reyes [2009]. We show how to
convert back and forth between the periodic rational Bézier and the interpolating trigonometric
barycentric form, derive a necessary condition to avoid poles of a trigonometric rational inter-
polant, and devise a general framework to perform degree elevation of periodic rational Bézier
curves. We further discuss the editing possibilities given by the trigonometric barycentric form.
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1. Introduction

We recall that a Bézier curve P : [0, 1] → R2, defined by the control points P0, . . . , Pn ∈ R2, is
given by

P (t) =
n∑

i=0

Bn
i (t)Pi,

where Bn
i (t) =

(
n
i

)
(1−t)n−iti denotes the i-th Bernstein polynomial of degree n. The only shape

controls induced by this formula are the control points Pi, which can be used to intuitively
modify the shape of the curve P . By associating a scalar αi ∈ R with each Pi, we obtain a
rational Bézier curve

P (t) =

∑n
i=0B

n
i (t)αiPi∑n

i=0B
n
i (t)αi

. (1)

The additional degrees of freedom α0, . . . , αn can be used to induce a push or pull effect towards
the control polygon. New shape controls for rational Bézier curves can be achieved by expressing
the curve in barycentric form. We recall that a barycentric rational curve Q : [0, 1] → R2,
defined by the distinct nodes t0, . . . , tn ∈ [0, 1], the interpolation points Q0, . . . , Qn ∈ R2, and
the non-zero weights β0, . . . , βn ∈ R, is given by

Q(t) =

∑n
i=0

(−1)i

t−ti
βiQi∑n

i=0
(−1)i

t−ti
βi

. (2)

The possibility of converting back and forth between the rational Bézier form (1) and the
barycentric form (2) is described by Ramanantoanina and Hormann [2021]. Due to the inter-
polation property Q(ti) = Qi for any i = 0, . . . , n, the barycentric form offers a more direct
control over the curve and can be used to force the curve to pass through specific points, which
is much harder to achieve using the rational Bézier form.
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(a) (b) (c) (d) (e) (f)

Figure 1: In order to create the curve in (a), a designer would normally use the control points
and weights of a rational Bézier curve to control the shape (b,c), which is intuitive, but requires
skill and experience to exactly reproduce the shape in (a). Instead, after converting the Bézier
curve in (c) to the interpolating barycentric form (d), it is possible to edit the curve by dragging
the interpolation points and forcing the curve to pass through a certain set of key points on the
desired shape (e) and then adjusting the shape by modifying the flatness at these points (f).
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Figure 2: The shape of the Bernstein (left) and the periodic basis functions (right) for n = 4.

Ramanantoanina and Hormann [2021] also analyse the effect of changing the other param-
eters of the barycentric form, namely the nodes ti and the weights βi. In particular, they
describe how to slide a point Qk along the curve by modifying the corresponding node tk and
suitably adjusting the weights without changing the shape of the curve, and how to control
the flatness of the curve at Qk by modifying βk. To this end, they derive the formula for the
tangent vector Q′(tk) from the formula of the derivatives of a barycentric rational interpolant
[Schneider and Werner, 1986] and show that only the length of this vector depends on βk, but
not its direction. Geometrically, this means that decreasing βk flattens a curve locally around
Qk, while increasing βk forces the curve to bend more tightly at Qk. They further describe how
to insert a new interpolation point without changing the shape of the curve, which effectively
raises the degree of the curve from n to n+ 1. Figure 1 showcases the advantages of editing a
curve using the barycentric form.

While the aforementioned constructions are only for open curves, the goal of this paper is to
derive similar shape control tools for closed curves. One option would be to close the rational
Bézier curve in (1) by aligning the end points, that is, by letting P0 = Pn, resulting in C0-
continuity, and higher orders of continuity can be achieved by further constraining control points
and weights. For example, C1-continuity is ensured if α1αn(P1 − P0) = α0αn−1(Pn − Pn−1).
Another option would be to consider Bézier splines or B-splines, but all these approaches result
in curves with a finite order of differentiability.

A third option is to consider periodic Bézier curves [Sánchez-Reyes, 2009]. These curves
are closed and smooth (that is, C∞) everywhere and inherit many important properties from
classical Bézier curves. The main idea behind their construction is to replace the Bernstein
polynomials by shifted versions of a periodic function that imitates the shape of a central
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Bernstein polynomial (see Figure 2). A periodic Bézier curve P : [0, 2π] → R2 of degree N ∈ N
with control points P0, . . . , Pn ∈ R2, where n = 2N , is defined as

P (t) =
n∑

i=0

Bn(t− ϕi)Pi,

where Bn(t) = Kn cosn t
2
, Kn = 2n

n+1

(
n
N

)−1
, and ϕi = 2iπ

n+1
for i = 0, . . . , n. Since cosn t

2
=

(1 + cos t)N/2N , it is clear that this is a trigonometric polynomial curve of degree N .

1.1 Contributions

We extend the construction of periodic Bézier curves in the same way that Bézier curves are
extended to rational Bézier curves. Namely, we introduce a weight αi for each control point
Pi of a periodic Bézier curve and then project the spatial periodic Bézier curve with control
points (αiPi, αi) ∈ R3 centrally into the z = 1 plane. Hence, a periodic rational Bézier curve
with control points P0, . . . , Pn ∈ R2 and weights α0, . . . , αn ∈ R is given by

P (t) =

∑n
i=0Bn(t− ϕi)αiPi∑n
i=0Bn(t− ϕi)αi

. (3)

Notice that P (t) reduces to a trigonometric polynomial curve if all weights αi are equal.
Recall that our goal is to explore the possibility of converting the periodic rational Bézier

form in (3) to an interpolating barycentric form and to investigate the shape control possibilities
that the latter offers. In the periodic setting, the equivalent of the barycentric rational curve
in (2) turns out to be the trigonometric barycentric rational curve Q : [0, 2π] → R2, defined
by the distinct nodes t0, . . . , tn ∈ [0, 2π), the interpolation points Q0, . . . , Qn, and the non-zero
weights β0, . . . , βn ∈ R, and given by

Q(t) =

∑n
i=0(−1)i csc t−ti

2
βiQi∑n

i=0(−1)i csc t−ti
2
βi

, (4)

where csc(t) = 1/ sin(t).
We first show (Section 2) how to convert back and forth between the periodic rational Bézier

form (3) and the trigonometric barycentric form (4). In this context, we also develop a necessary
condition on the weights βi to assure that the curveQ(t) has no poles. We then explore the shape
control offered by the trigonometric barycentric form, namely, by modifying the interpolation
points, the nodes, or the weights (Section 3). Finally, we present three algorithms for performing
degree elevation of a periodic rational Bézier curve (Section 4), using either the discrete Fourier
transform as in [Sánchez-Reyes, 2009] or a direct conversion of the old to the new control points,
or by inserting two new interpolation points into the trigonometric barycentric form such that
the shape of the curve remains the same.

2. Equivalence of periodic rational Bézier and trigonometric barycentric form

Let us first recall how to convert a trigonometric polynomial into barycentric form [Salzer, 1948;
Henrici, 1979; Berrut, 1984]. Consider the trigonometric polynomial p(t) = a0+

∑N
k=1(ak cos(kt)+

bk sin(kt)) of degree N for certain 2N+1 coefficients a0, a1 . . . , aN , b1, . . . , bN and 2N+1 distinct
nodes t0, . . . , tn ∈ [0, 2π), where n = 2N . It is well known that p can be expressed in terms of
the values pi = p(ti), i = 0, . . . , n as

p(t) =
n∑

i=0

n∏
j=0, j ̸=i

sin
t−tj
2

sin
ti−tj
2

pi,
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which is commonly known as Gauss’s formula for trigonometric interpolation [Salzer, 1948]
and akin to the Lagrange form for classical polynomials. Factoring out the product ℓ(t) =∏n

j=0 sin
t−tj
2

, we get the first trigonometric barycentric form

p(t) = ℓ(t)
n∑

i=0

Wi csc
t− ti

2
pi (5)

of p, where

Wi =
n∏

j=0, j ̸=i

csc
ti − tj

2
, i = 0, . . . , n. (6)

Note that in the special case of equidistant nodes ti = 2iπ
n+1

, i = 0, . . . , n, Berrut [1984] shows

that the weights are simply Wi = (−1)iW0. We can further write p in second trigonometric
barycentric form after dividing (5) by the constant function 1, expressed in first trigonometric
barycentric form as 1 = ℓ(t)

∑n
i=0Wi csc t−ti

2
, and canceling the factor ℓ(t),

p(t) =

∑n
i=0Wi csc t−ti

2
pi∑n

i=0Wi csc t−ti
2

.

In particular, we can use the first trigonometric barycentric form to convert a periodic rational
Bézier curve into trigonometric barycentric form.

Proposition 1. For any sequence of nodes 0 ≤ t0 < · · · < tn < 2π, we can express the periodic
rational Bézier curve P (t) in (3) in trigonometric barycentric form (4) with Qi = P (ti) and
βi = (−1)iWiz(ti), where z(t) =

∑n
i=0Bn(t− ϕi)αi is the denominator of P (t).

Proof. We first express the denominator z(t) and the numerator of P (t) in first trigonometric
barycentric form (5) as

z(t) =
n∑

i=0

Bn(t− ϕi)αi = ℓ(t)
n∑

i=0

Wi csc
t− ti

2
z(ti), (7)

n∑
i=0

Bn(t− ϕi)αiPi = z(t)P (t) = ℓ(t)
n∑

i=0

Wi csc
t− ti

2
z(ti)P (ti). (8)

We then divide (8) by (7), cancel the factor ℓ(t), and substitute P (ti) = Qi and Wiz(ti) =
(−1)iβi to arrive at the trigonometric barycentric form (4).

Since each of the (n+ 1)2 terms Bn(ti−ϕj) can be computed in O(log n) and each weight Wi

in O(n) time, the overall time complexity of this conversion is O(n2 log n). Letting zi = z(ti),
P̂i = (αiPi, αi) and Q̂i = (ziQi, zi) for i = 0, . . . , n, the relations (7) and (8) can be written
compactly as Q̂ = BP̂ , where

B =

Bn(t0 − ϕ0) · · · Bn(t0 − ϕn)
...

. . .
...

Bn(tn − ϕ0) · · · Bn(tn − ϕn)

 , P̂ =

P̂0
...

P̂n

 , Q̂ =

Q̂0
...

Q̂n

 .

This is useful for showing how to get back from the trigonometric barycentric form to the
periodic rational Bézier form.

Proposition 2. We can express the trigonometric barycentric rational curve Q(t) in (4) as a
periodic rational Bézier curve (3) with control points Pi = (x̂i, ŷi)/ẑi and weights αi = ẑi, where
(x̂i, ŷi, ẑi) is the i-th row of P̂ = B−1Q̂, as long as all ẑi are non-zero.
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(a) (b) (c) (d)

Figure 3: Converting a periodic rational curve from trigonometric barycentric form (a) to
periodic rational Bézier form may require infinite control points (b), but after inserting two
interpolation points (c), which raises the degree of the curve by one, the curve can be represented
as a periodic rational Bézier curve with finite control points (d).

Proof. Given Q(t), we first use the nodes ti to compute the Wi as in (6), then use the weights
βi to set zi = (−1)iβi/Wi, and finally define the i-th row of Q̂ as (ziQi, zi). The statement then
follows from the fact that Q̂ = BP̂ , but it remains to show that B is invertible.

To this end, we first recall from [Sánchez-Reyes, 2009] that the n+ 1 functions Bn(t− ϕi),
i = 0, . . . , n span the (n+ 1)-dimensional space TN = span{cos(kt), sin(kt) : k = 0, . . . , N} and
are thus linearly independent. Moreover, any non-trivial linear combination of these functions
is a trigonometric polynomial of order N and as such has no more than 2N = n zeros [Powell,
1981]. Consequently, the functions Bn(t− ϕi) form a Chebyshev system, which implies that B
is non-singular.

The time complexity of this conversion is O(n3), since this is the time that it takes in general
to solve the dense linear system Q̂ = BP̂ . If one or more of the ẑi in Proposition 2 vanish,
then this means that the curve cannot by represented in periodic rational Bézier form, unless
we extend the definition to allow for infinite control points, like in the case of classical rational
Bézier curves [Piegl, 1987; Farin, 2001; Ramanantoanina and Hormann, 2021]. Alternatively,
we can apply degree elevation (see Section 4) to represent the curve as a periodic rational Bézier
curve with higher degree.

Example 1. Let N = 1, so that n = 2, and consider the trigonometric barycentric rational
curve Q(t) with equidistant nodes t0 = 0, t1 = 2π/3, t2 = 4π/3, interpolation points Q0 = (2, 0),
Q1 = (−1, 1), Q2 = (−1,−1), and weights β0 = 2/5, β1 = β2 = 1, which turns out to
be a non-uniformly parameterized circle with centre (1/3, 0) and radius 5/3 (see Figure 3.a).
Computing P̂ as in Proposition 2, we find that ẑ0 = 0 and that Q is a periodic rational
Bézier curve with normal control points P1 = (−4/3, 5/3), P2 = (−4/3,−5/3) and weights
α1 = α2 = 9/10 and an infinite control point P0 in the direction (1, 0) with homogeneous
coordinates (3/2, 0, 0) (see Figure 3.b). After increasing the degree of Q from 1 to 2 by adding
two points at t = π/3 and t = 5π/3 (see Section 4), resulting in the curve Q̃ with nodes t̃0 = t0,
t̃1 = π/3, t̃2 = t1, t̃3 = t2, t̃4 = 5π/3, interpolation points Q̃0 = Q0, Q̃1 = Q(t̃1) = (1/3, 5/3),
Q̃2 = Q1, Q̃3 = Q2, Q̃4 = Q(t̃4) = (1/3,−5/3), and weights β̃0 = 8/5, β̃1 = β̃4 = 6

√
3/5,

β̃2 = β̃3 = 2 (see Figure 3.c), we can apply Proposition 2 to convert the curve into periodic
rational Bézier form with control points P̃0 = (7, 0), P̃1 ≈ (0.254, 2.680), P̃2 ≈ (−1.444, 0.792),
P̃3 ≈ (−1.444,−0.792), P̃4 ≈ (0.254,−2.680) and weights α̃0 = 3/20, α̃1 = α̃4 ≈ 0.461,
α̃2 = α̃3 ≈ 0.964 (see Figure 3.d). Note that the control polygon is not regular, because of the
non-uniform parameterization of the curve.

Because of the equivalence of the periodic rational Bézier form (3) and the trigonometric
barycentric form (4), we will use P (t) and Q(t) interchangeably from now on to refer to the
same periodic rational curve, given in either of the two forms.
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(a) (b) (c) (d) (e)

Figure 4: The shape of a periodic rational curve in trigonometric barycentric form (a) can
be modified intuitively by displacing an interpolation point (b) or by changing the associated
weight (c). The blue and the red curve are obtained from the black curve by moving the
indicated interpolation point (b) and by increasing or decreasing its weight, visualized by pro-
portionally sized disks (c), while leaving all other interpolation points and weights unchanged.
Moreover, it is possible to slide an interpolation point (d) and to insert new interpolation points
(e) without changing the shape of the curve.

One important aspect when modelling with periodic rational curves it to ensure that they
are free of poles. On the one hand, this is guaranteed for P (t) if all weights αi are positive,
since this implies that the denominator z(t) is positive, too, for all t ∈ [0, 2π]. On the other
hand, it is less clear which choice of weights βi guarantees that the denominator of Q(t) does
not vanish for some t ∈ [0, 2π], because the functions (−1)i csc t−ti

2
are neither entirely positive

nor entirely negative. However, Berrut [1988] shows that Q(t) has no poles if all βi are equal
to some common non-zero value, and we also know that βi = (−1)iWi for i = 0, . . . , n with Wi

defined as in (6) is a safe choice, because Q(t) is a trigonometric polynomial curve (in second
trigonometric barycentric form) in that case. Since the factors of Wi in (6) are negative for
i < j and positive for i > j, if we assume the ti to be ordered and in [0, 2π), and n = 2N is even,
it is clear that sgn(Wi) = (−1)i and that the βi are all positive in this case. This is actually
not surprising, because it turns out that a common sign of the βi is a necessary condition for
the absence of poles, exactly as for classical barycentric rational interpolants [Schneider and
Werner, 1986].

Proposition 3. If Q(t) is a trigonometric barycentric rational curve (4) without poles, then
the weights β0, . . . , βn have the same sign.

Proof. If we follow Proposition 2 and convert Q(t) into the spatial periodic Bézier curve P̂ (t)
with control points P̂i, without projecting P̂ (t) centrally into the z = 1 plane to get P (t), then
it is clear that the z-component of P̂ (t), which is nothing but the denominator z(t) of P (t), does
not vanish for any t ∈ [0, 2π], because Q(t) is free of poles. It then follows from Proposition 1
that the βi = (−1)iWiz(ti) are all either positive or negative, because sgn(Wi) = (−1)i, as
pointed out above.

Since the weights αi and βi can always be scaled by a common non-zero factor without
changing the curve, we can summarize these considerations crisply as: positive αi are sufficient,
but not necessary for the absence of poles, and positive βi are necessary, but not sufficient.

3. Shape editing using the trigonometric barycentric form

The equivalence of the periodic rational Bézier and the trigonometric barycentric form enables
new editing possibilities for periodic rational Bézier curves, beyond changing the control points
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Pi and the associated weights αi, by modifying the parameters of the trigonometric barycentric
form, namely the interpolation points Qi, the nodes ti, and the weights βi, similar to how it
can be done for classical rational Bézier curves [Ramanantoanina and Hormann, 2021].

3.1 Displacing an interpolation point

The interpolation property of the trigonometric barycentric form provides an intuitive means
to modify the curve by displacing an interpolation point Qk (see Figure 4.b). This is par-
ticularly useful for forcing the curve to pass through a specific target point, which is much
harder to achieve by changing the Bézier control points Pi. However, in contrast to the basis
functions αiBn(t− ϕi)/

∑n
j=0 αjBn(t− ϕj) of the periodic rational Bézier form, the basis func-

tions (−1)i csc t−ti
2
βi/

∑n
j=0(−1)j csc

t−tj
2
βj of the trigonometric barycentric form are neither

non-negative nor as nicely bell-shaped and a large displacement of some Qk might therefore
induce a less intuitive global deformation of the curve’s shape. Hence, while displacing the
interpolation points is good for micro-editing the shape, the Bézier control points remain the
better handles for global shape design.

3.2 Sliding an interpolation point

For the same reason as before, changing the value of a single node tk may deform the curve in a
non-intuitive way. However, it is possible to update simultaneously the interpolation point Qk

and all the weights βi, such that changing a node tk results in sliding Qk along a curve. This
can be achieved in two ways. On the one hand, we can use Proposition 2 to express Q(t) in
periodic rational Bézier form using the current sequence of nodes and then convert P (t) back
into trigonometric barycentric form with Proposition 1, this time with the new sequence of
nodes, where tk is replaced by some new value t̃k:

Q(t)

convert to periodic rational Bézier form with respect to t0, . . . , tk, . . . , tn
��

P (t)

convert to trigonometric barycentric form with respect to t0, . . . , t̃k, . . . , tn ��
Q̃(t)

(9)

On the other hand, we can also compute the parameters of the new curve Q̃(t) directly.

Proposition 4. Suppose we change the node tk for some k ∈ {1, . . . , n−1} to a new value t̃k ∈
(tk−1, tk+1). The trigonometric barycentric rational curve Q(t) in (4) can then be expressed in
terms of the nodes t0, . . . , t̃k, . . . , tn, the interpolation points Q0, . . . , Q̃k, . . . Qn, and the weights
β̃i, where Q̃k = Q(t̃k) and

β̃k = sin
t̃k − tk

2

n∑
j=0

(−1)j+k csc
t̃k − tj

2
βj, β̃i = csc

ti − t̃k
2

sin
ti − tk

2
βi, i ̸= k. (10)

Proof. We follow the diagram in (9) and first convert Q(t) to periodic rational Bézier form (3).
By Proposition 1, we then know that the weights of the given curve Q can be written with
respect to the given nodes t0, . . . , tn as βi = (−1)iWiz(ti), where z(t) is the denominator of P (t)
and Wi is defined as in (6). It further follows from Proposition 1 that Q can be expressed with
respect to the new nodes t̃0, . . . , t̃n, where t̃i = ti for i ̸= k, using the new interpolation points

Q̃i = P (t̃i) and the new weights β̃i = (−1)iW̃iz(t̃i), where W̃i =
∏n

j=0, j ̸=i csc
t̃i−t̃j
2

. Clearly,
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Q̃i = P (ti) = Qi for i ̸= k and Q̃k = P (t̃k) = Q(t̃k). To prove the formulas in (10), we recall
that z(t) can be expressed in first trigonometric barycentric form as

z(t) = ℓ(t)
n∑

j=0

Wj csc
t− tj

2
z(tj) = ℓ(t)

n∑
j=0

(−1)j csc
t− tj

2
βj,

where ℓ(t) =
∏n

j=0 sin
t−tj
2

. Since ℓ(t̃k) =
∏n

j=0 sin
t̃k−tj

2
= sin t̃k−tk

2
/W̃k, we conclude that

β̃k = (−1)kW̃kz(t̃k) = (−1)kW̃kℓ(t̃k)

n∑
j=0

(−1)j csc
t̃k − tj

2
βj = sin

t̃k − tk
2

n∑
j=0

(−1)j+k csc
t̃k − tj

2
βj .

For i ̸= k, we note that

W̃i =
n∏

j=0, j ̸=i

csc
t̃i − t̃j

2
= csc

ti − t̃k
2

n∏
j=0, j ̸=i,k

csc
ti − tj

2
= csc

ti − t̃k
2

sin
ti − tk

2
Wi,

hence

β̃i = (−1)iW̃iz(t̃i) = csc
ti − t̃k

2
sin

ti − tk
2

(−1)iWiz(ti) = csc
ti − t̃k

2
sin

ti − tk
2

βi.

Figure 4.d shows that modifying a single node tk and updating the interpolation points and
weights as described in Proposition 4 does not change the shape of the curve, but only the
position of Qk.

Remark 1. We restrict the new value t̃k to be in the interval (tk−1, tk+1) in Proposition 4 and
exclude the cases k = 0 and k = n, so as to keep the statement and the proof simple, but
we can also deal with the case t̃k ∈ (tl−1, tl) if 0 < l < k or k + 1 < l ≤ n. We just need
to make sure that the indices are rearranged such that the new nodes are ordered, and this
rearrangement requires to change the signs of some weights, so that they all end up having the
same sign. For example, if 0 < l < k, then we can compute the weights β̃i as in (10) and then
define the correctly ordered nodes t̂i, interpolation points Q̂i, and weights β̂i as

i 0 . . . l − 1 l l + 1 . . . k k + 1 . . . n

t̂i t0 . . . tl−1 t̃k tl . . . tk−1 tk+1 . . . tn

Q̂i Q0 . . . Ql−1 Q̃k Ql . . . Qk−1 Qk+1 . . . Qn

β̂i β̃0 . . . β̃l−1 (−1)k+lβ̃k −β̃l . . . −β̃k−1 β̃k+1 . . . β̃n

A similar rearrangement table can be derived if k+ 1 < l ≤ n and also for the cases t̃k ∈ [0, t0)
and t̃k ∈ (tn, 2π).

It is then natural to ask what happens when t̃k jumps from one interval to the neighbouring
interval, for example, as t̃k transitions from (tk−1, tk+1) to (tk+1, tk+2). This can be seen as an
elastic collision where Qk slides towards Qk+1, swaps the order in the moment of collision, and
afterwards continues to slide as Qk+1. As long as h = tk+1 − t̃k > 0, Proposition 4 can be
used to update all parameters, but it follows from (10) that β̃k and β̃k+1 grow like O(1/h) as
h converges to zero. If h is very small, this may lead to numerical instabilities. However, this
can be avoided in an application by limiting the maximal zoom factor and not letting the user
move Qk closer than one pixel towards Qk+1. In the moment of collision, when t̃k = tk+1, the
trigonometric barycentric form breaks down as the weights β̃k and β̃k+1 in (10) diverge, but we
can still derive a formula for the curve Q in this state.
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Proposition 5. If the node tk for some k ∈ {0, . . . , n − 1} is set to the new value t̃k = tk+1,
resulting in a double node tk+1, then we can express the trigonometric barycentric rational curve
in (4) as

Q(t) =

n∑
i=0,i̸=k

(−1)i csc
t− ti
2

β̂iQi + (−1)k+1 csc
t− tk+1

2
cot

t− tk+1

2
β̂′
k+1

(
Qk+1 + 2 tan

t− tk+1

2
Q′

k+1

)
n∑

i=0,i̸=k

(−1)i csc
t− ti
2

β̂i + (−1)k+1 csc
t− tk+1

2
cot

t− tk+1

2
β̂′
k+1

,

(11)

where

β̂i = csc
ti − tk+1

2
sin

ti − tk
2

βi, i ̸= k, k + 1, (12)

β̂k+1 = sin
tk+1 − tk

2

n∑
i=0,i̸=k+1

(−1)k+1+i csc
tk+1 − ti

2
βi + cos

tk+1 − tk
2

βk+1, β̂′
k+1 = sin

tk+1 − tk
2

βk+1,

and Q′
k+1 = Q′(tk+1).

Proof. If t̃k ∈ (tk−1, tk+1), then we know from Proposition 4 that Q(t) = N(t)/D(t), where

N(t) =
n∑

i=0,i ̸=k,k+1

(−1)i csc
t− ti

2
β̃iQi + (−1)k csc

t− t̃k
2

β̃kQ̃k + (−1)k+1 csc
t− tk+1

2
β̃k+1Qk+1

and

D(t) =
n∑

i=0,i ̸=k,k+1

(−1)i csc
t− ti

2
β̃i + (−1)k csc

t− t̃k
2

β̃k + (−1)k+1 csc
t− tk+1

2
β̃k+1,

with Q̃k = Q(t̃k) and the β̃i as in (10). Our task now is to find the limit of N(t) and D(t) as
t̃k converges to tk+1.

Let us first focus on the denominator D(t). The sum poses no problem, because the β̃i for
i ̸= k, k+1 simply converge to the β̂i in (12) as t̃k → tk+1, but the remaining two terms need to
be analysed more carefully, since β̃k and β̃k+1 diverge. Using their definition in (10), we have

csc
t− t̃k

2
β̃k − csc

t− tk+1

2
β̃k+1

= csc
t− t̃k

2
sin

t̃k − tk
2

n∑
i=0

(−1)k+i csc
t̃k − ti

2
βi − csc

t− tk+1

2
csc

tk+1 − t̃k
2

sin
tk+1 − tk

2
βk+1

= csc
t− t̃k

2
sin

t̃k − tk
2

n∑
i=0,i ̸=k+1

(−1)k+i csc
t̃k − ti

2
βi

+

(
csc

t− t̃k
2

sin
t̃k − tk

2
− csc

t− tk+1

2
sin

tk+1 − tk
2

)
csc

tk+1 − t̃k
2

βk+1.

As before, the terms in the sum are uncritical, and for the last term, we can use L’Hôpital’s
rule to get

lim
t̃k→tk+1

[(
csc

t− t̃k
2

sin
t̃k − tk

2
− csc

t− tk+1

2
sin

tk+1 − tk
2

)
csc

tk+1 − t̃k
2

]
= − csc

t− tk+1

2
cos

tk+1 − tk
2

− csc
t− tk+1

2
cot

t− tk+1

2
sin

tk+1 − tk
2

.

Overall, we conclude that D(t) converges to the denominator in (11) as t̃k → tk+1.
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Similar arguments can be used to show that N(t) converges to the numerator in (11). We
just need to remember that also Q̃k depends on t̃k when applying L’Hôpital’s rule to

lim
t̃k→tk+1

[(
csc

t− t̃k
2

sin
t̃k − tk

2
Q̃k − csc

t− tk+1

2
sin

tk+1 − tk
2

Qk+1

)
csc

tk+1 − t̃k
2

]
,

which eventually leads to the term involving Q′
k+1.

3.3 Changing a weight

We now investigate the effect of changing a weight βk. In the case of barycentric rational
curves, Ramanantoanina and Hormann [2021] observed that only the length of the curve’s
tangent vector at Qk depends on βk, but not its direction, and we observe the same behaviour
in the trigonometric setting.

Proposition 6. For any k ∈ {0, . . . , n} the tangent vector of the trigonometric rational
barycentric curve Q(t) in (4) at Qk is given by

Q′(tk) =
1

2βk

n∑
i=0, i ̸=k

(−1)k+i+1 csc
tk − ti

2
βi(Qk −Qi). (13)

Proof. Multiplying the numerator and denominator in (4) by sin t−tk
2

, we haveQ(t) = N(t)/D(t),
where

N(t) =
n∑

i=0, i ̸=k

(−1)i sin
t− tk

2
csc

t− ti
2

βiQi + βkQk

and

D(t) =
n∑

i=0, i ̸=k

(−1)i sin
t− tk

2
csc

t− ti
2

βi + βk.

By the product rule,

N ′(t) =
1

2

n∑
i=0, i ̸=k

(−1)i
(

cos
t− tk

2
− sin

t− tk
2

cot
t− ti

2

)
csc

t− ti
2

βiQi

and

D′(t) =
1

2

n∑
i=0, i ̸=k

(−1)i
(

cos
t− tk

2
− sin

t− tk
2

cot
t− ti

2

)
csc

t− ti
2

βi.

For t = tk, these expressions simplify to

N(tk) = (−1)kβkQk, N ′(tk) =
1

2

n∑
i=0, i ̸=k

(−1)i csc
tk − ti

2
βiQi,

D(tk) = (−1)kβk, D′(tk) =
1

2

n∑
i=0, i ̸=k

(−1)i csc
tk − ti

2
βi.

The statement then follows from the quotient rule, which asserts thatQ′(tk) = N ′(tk)D(tk)−N(tk)D
′(tk)

D(tk)2
.

Since βk does not appear in the sum in (13), which determines the direction of the tangent
vector at Qk, but only in the denominator of the leading factor, which influences the length
of this vector, it follows that decreasing βk increases the flatness of the curve at Qk, while
increasing βk lets the curve bend more tightly (see Figure 4.c)). However, setting βk to a
very small or a very large value may create poles. Bounds on βk that prevent this can be
derived in the same way as for barycentric rational curves [Ramanantoanina and Hormann,
2021, Proposition 6].
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N = 2 N = 3 N = 4 N = 5

Figure 5: Raising the degree (from left to right) of a periodic rational Bézier curve.

4. Degree elevation

4.1 Degree elevation using the discrete Fourier transform

Sánchez-Reyes [2009] describes a three-step procedure to increase the degree of a periodic Bézier
curve P (t) from N to N + 1. He first uses the discrete Fourier transform (DFT) to express P
as a complex trigonometric polynomial curve with 2N+1 Fourier coefficients c−N , . . . , cN ∈ C2.
Degree elevation can then be achieved by simply adding two higher order zero frequencies and
converting the new set of 2N + 3 Fourier coefficients c̃i = ci, i = −N, . . . , N and c̃−N−1 =
c̃N+1 = (0, 0) back to the spatial domain with the inverse DFT:

PN(t)

DFT
��

PN+1(t)

{cj}Nj=−N

degree

elevation
// {c̃j}N+1

j=−N−1

DFT−1

OO

This approach can easily be adapted to a periodic rational Bézier curve P (t) with control
points Pi and weights αi, since the latter is just the image of the spatial periodic Bézier curve
P̂ (t) with control points (αiPi, αi) under the central projection Π into the z = 1 plane. Hence,
the degree of a periodic rational Bézier curve can be raised from N to N + 1 in five simple
steps:

PN(t)

Π−1

��

PN+1(t)

P̂N(t)

DFT
��

P̂N+1(t)

Π

OO

{cj}Nj=−N

degree

elevation
// {c̃j}N+1

j=−N−1

DFT−1

OO

4.2 Degree elevation via the trigonometric barycentric form

The equivalence of the periodic rational Bézier and the trigonometric barycentric form offers an
alternative approach to degree elevation. Given a periodic rational Bézier curve P (t) of degree
N , we first convert P as explained in Proposition 1, but using n + 3 nodes 0 ≤ t0 < · · · <
tn+2 < 2π, thus resulting in a trigonometric barycentric rational curve Q(t) of degree N + 1.
We then follow Proposition 2 to convert Q back into periodic rational Bézier form, but now

11
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with degree N + 1:

PN(t)

convert to trigonometric barycentric form with respect to t0, . . . , tn+2
��

QN+1(t)

convert to periodic rational Bézier form with respect to t0, . . . , tn+2
��

PN+1(t)

This procedure can be further simplified by using uniformly distributed nodes ti and recalling
the matrix notation of the conversion process. It then follows that we can compute the control
points of the degree-raised spatial periodic Bézier curve from the control points of the given
spatial periodic Bézier curve as P̂N+1 = C−1DP̂N , where the entries of the matrices C ∈
R(n+3)×(n+3) and D ∈ R(n+3)×(n+1) are

Ci,j = Bn+2(ψi − ψj), Dj,k = Bn(ψj − ϕk), i, j = 0, . . . , n+ 2, k = 0, . . . , n,

with ψi = 2iπ
n+3

, i = 0, . . . , n + 2 and ϕi = 2iπ
n+1

, i = 0, . . . , n. Hence, the degree can be raised
from N to N + 1 (see Figure 5) in three simple steps:

PN(t)

Π−1

��

PN+1(t)

P̂N(t)
multiply with

C−1D
// P̂N+1(t)

Π

OO

Instead of inverting C, it is advisable to solve instead the linear system CP̂N+1 = DP̂N , which
can be done efficiently in O(n log n) time using the fast Fourier transform, because C is a
symmetric circulant matrix.

4.3 Degree elevation using point insertion

If we prefer to work with the trigonometric barycentric form, then a third variant of degree
elevation is the following. Given the trigonometric barycentric rational curve Q(t), its degree
can be raised from N to N + 1 by inserting two new interpolation points. Conceptually, this
is achieved by first converting Q with Proposition 2 to periodic rational Bézier form, using
the given nodes t0, . . . , tn, and then using Proposition 1, but with respect to the new nodes
t̃0, . . . , t̃n+2, which are obtained by adding the two parameter values corresponding to the new
interpolation points to the sequence of given nodes, to obtain Q as a trigonometric barycentric
rational curve of degree N + 1:

QN(t)

convert to periodic rational Bézier form with respect to t0, . . . , tn
��

PN(t)

convert to trigonometric barycentric form with respect to t̃0, . . . , t̃n+2
��

QN+1(t)

As in the previous subsection, the interpolation points and weights of the degree-raised curve can
be computed from the interpolation points and weights of the given curve as Q̂N+1 = CD−1Q̂N ,
where the entries of the matrices C ∈ R(n+3)×(n+1) and D ∈ R(n+1)×(n+1) are

Ci,j = Bn(t̃i − ϕj), Dj,k = Bn(tj − ϕk), i = 0, . . . , n+ 2, j, k = 0, . . . , n,

12
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but we can actually avoid matrix multiplication and inversion and compute the parameters of
the degree-raised curve directly with simple formulas.

Since we can slide interpolation points to any position along the curve (see Proposition 4
and Remark 1), we assume without loss of generality that the two new interpolation points are
inserted at the two parameter values t̃k, t̃k+1 ∈ (tk−1, tk) for some k ∈ {1, . . . , n}, so that the
new nodes t̃0, . . . , t̃n+2 are

i 0 . . . k − 1 k k + 1 k + 2 . . . n+ 2

t̃i t0 . . . tk−1 t̃k t̃k+1 tk . . . tn

Proposition 7. The trigonometric barycentric rational curve Q of degree N in (4) can be
expressed as a trigonometric barycentric rational curve Q̃ of degree N + 1 with parameters

t̃i =



ti,

t̃k,

t̃k+1,

ti−2,

Q̃i =



Qi,

Q(t̃k),

Q(t̃k+1),

Qi−2,

β̃i =



csc ti−t̃k
2 csc ti−t̃k+1

2 βi,

csc t̃k−t̃k+1

2

∑n
j=0(−1)j+k csc

t̃k−tj
2 βj ,

csc t̃k+1−t̃k
2

∑n
j=0(−1)j+k+1 csc

t̃k+1−tj
2 βj ,

csc ti−2−t̃k
2 csc ti−2−t̃k+1

2 βi−2

if



i < k,

i = k,

i = k + 1,

i > k + 1.

Proof. As in the proof of Proposition 4, the statement is obvious for the nodes t̃i and the
interpolation points Q̃i, and we conclude from Proposition 1 that βi = (−1)iWiz(ti) and β̃i =
(−1)iW̃iz(t̃i). For i < k, we note that

W̃i =
n+2∏

j=0, j ̸=i

csc
t̃i − t̃j

2
= csc

ti − t̃k
2

csc
ti − t̃k+1

2
Wi,

and therefore

β̃i = (−1)iW̃iz(t̃i) = csc
ti − t̃k

2
csc

ti − t̃k+1

2
(−1)iWiz(ti) = csc

ti − t̃k
2

csc
ti − t̃k+1

2
βi.

For i > k + 1, we can similarly show that

β̃i = csc
ti−2 − t̃k

2
csc

ti−2 − t̃k+1

2
βi−2.

For i = k, recall that z(t) = ℓ(t)
∑n

j=0(−1)j csc
t−tj
2
βj and since ℓ(t̃k) = csc t̃k−t̃k+1

2
/W̃k, we have

β̃k = (−1)kW̃kz(t̃k) = (−1)kW̃kℓ(t̃k)

n∑
j=0

(−1)j csc
t̃k − tj

2
βj = csc

t̃k − t̃k+1

2

n∑
j=0

(−1)j+k csc
t̃k − tj

2
βj .

For i = k + 1, a similar reasoning gives

β̃k+1 = csc
t̃k+1 − t̃k

2

n∑
j=0

(−1)j+k+1 csc
t̃k+1 − tj

2
βj.

Remark 2. In practice, a user would probably prefer to insert one interpolation point at a
time. Assuming that the current number of interpolation points is odd, this can be done by
simply inserting two new points Q̃k and Q̃k+1, following Proposition 7, but showing only Q̃k

to the user. Once the user decides to insert another interpolation point, Q̃k+1 is revealed and
moved to the desired position using Proposition 4.
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5. Conclusion

In this paper, we extended the idea of periodic Bézier curves by Sánchez-Reyes [2009] to the
rational setting and explored the use of the trigonometric barycentric form in the context
of curve design. We showed that it offers more direct control over the curve’s shape and
complements the usual shape control tools given by the periodic rational Bézier form (control
points and weights). While the periodic rational Bézier form is more suitable for designing the
general shape of a curve, the trigonometric barycentric form is recommended for micro-editing.
In particular, the interpolation property can be used to intuitively adjust the shape of a curve
by moving the interpolation points and to force a curve to pass through specific points in the
plane. If the user wishes to adjust the shape in a region without any interpolation points,
there are two possible solutions. One can either slide an existing interpolation point to the
desired position or insert a new interpolation point, both without changing the shape of the
curve. Moreover, the user can control the curvature of a curve at an interpolation point by
adjusting the corresponding weight. Although we restricted our discussion to planar curves, it
is clear that the described framework is also valid for 3D curves and even higher dimensional
curves, because the construction is independent of the dimension of the control points Pi and
the interpolation points Qi.
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