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Abstract
Bézier curves are indispensable for geometric modeling and computer graphics. They have
numerous favourable properties and provide the user with intuitive tools for editing the shape of
a parametric polynomial curve. Even more control and flexibility can be achieved by associating
a shape parameter with each control point and considering rational Bézier curves, which comes
with the additional advantage of being able to represent all conic sections exactly. In this
paper, we explore the editing possibilities that arise from expressing a rational Bézier curve in
barycentric form. In particular, we show how to convert back and forth between the Bézier and
the barycentric form, we discuss the effects of modifying the constituents (nodes, interpolation
points, weights) of the barycentric form, and we study the connection between point insertion
in the barycentric form with degree elevation of the Bézier form. Moreover, we analyze the
favourable performance of the barycentric form for evaluating the curve.
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1. Introduction

A planar rational Bézier curve P : [0, 1] → R2 of degree n ∈ N is defined by a set of control
points P0, . . . , Pn ∈ R2 and a set of weights α0, . . . , αn ∈ R as

P (t) =
(
x(t), y(t)

)
=

∑n
i=0 αiB

n
i (t)Pi∑n

i=0 αiBn
i (t)

, (1)

where Bn
i (t) =

(
n
i

)
(1 − t)n−iti are the Bernstein polynomials. If α0 = αn = 1, then the curve

is said to be in standard form, which can always be achieved, if the given weights α0 and αn

are non-zero and have the same sign, by uniformly scaling all weights and applying a linear
rational parameter transformation [Patterson, 1985; Farin and Worsey, 1991]. The curve P can
also be written in homogeneous form and understood as the (central) projection of the spatial
polynomial Bézier curve P̂ : [0, 1] → R3,

P̂ (t) =
(
x̂(t), ŷ(t), ẑ(t)

)
=

n∑
i=0

Bn
i (t)P̂i, (2)

with homogeneous control points P̂i = (αiPi, αi) ∈ R3 into the ẑ = 1 plane, because x(t) =
x̂(t)/ẑ(t) and y(t) = ŷ(t)/ẑ(t). If all weights αi are equal, then P reduces to a planar polynomial
Bézier curve.

Among the key properties that justify the popularity of rational Bézier curves for shape
design, we recall that such a curve can be translated, scaled, or rotated by simply translat-
ing, scaling, or rotating its control polygon, and the same holds more generally for projective
transformations [Farin, 2001]. Moreover, the shape of the curve can be controlled intuitively
by modifying the control points Pi and the weights αi (see Figure 1), or by changing the Farin
points Fi = (αiPi + αi+1Pi+1)/(αi + αi+1) ∈ R2 that can be associated with the i-th edge
[Pi, Pi+1] of the control polygon for i = 0, . . . , n − 1 [Farin, 1989]. However, except at the
endpoints, this control is indirect in the sense that it is difficult for the user to let the curve
pass exactly through a specific point Q ∈ R2.
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Figure 1: (a) a rational Bézier curve of degree n = 4 with weights α = (1, 3/2, 1, 1/2, 1); (b)
the effect of moving the control point P2; (c) the effect of increasing the weight α2 from 1 to 3.
The dots visualize the curve points P (i/16) for i = 0, . . . , 16.
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Figure 2: (a) converting a rational Bézier curve in (1) to the barycentric form in (3); (b) the
effect of moving the interpolation point Q2; (c) the effect of decreasing the weight β2 by 50%.
The dots visualize the curve points P (i/16) for i = 0, . . . , 16.

To overcome this limitation, we propose to convert the curve P to barycentric form and
express it as

P (t) =

∑n
i=0(−1)i βi

t−ti
Qi∑n

i=0(−1)i βi

t−ti

, (3)

for certain distinct nodes t0, . . . , tn ∈ R with corresponding interpolation points Q0, . . . , Qn ∈ R2

and non-zero weights β0, . . . , βn ∈ R. Since P (ti) = Qi, by construction [Schneider and Werner,
1986], this representation allows for direct control, as we can force the curve to pass through
some Q ∈ R2 by simply moving one of the Qi to Q. Moreover, the “flatness” of the curve at
Qi can be controlled by modifying the weight βi (see Figure 2).

To the best of our knowledge, the barycentric form has been studied only in the functional
setting, so far. For polynomials, it can be traced back to Taylor [1945] and Dupuy [1948],
and Berrut and Trefethen [2004] provide a detailed summary of its favourable properties. For
rational functions, Salzer [1981] and Schneider and Werner [1986] were first to identify the
advantages of the barycentric form, and Berrut and Mittelmann [1997] show that every rational
interpolant can be expressed in barycentric form for a suitable choice of weights. For very
specific weights, barycentric rational interpolants are guaranteed to have no poles and a high
approximation order [Berrut, 1988; Floater and Hormann, 2007], with slow-growing Lebesgue
constants, in particular for equidistant nodes [Bos et al., 2012]. The barycentric form is also
a key ingredient of the AAA algorithm [Nakatsukasa et al., 2018], which extends the work
of Antoulas and Anderson [1986] and uses an adaptive node selection scheme for efficiently
computing robust rational approximations of real and complex functions.

2



New shape control tools for rational Bézier curve design

1.1. Contributions

In contrast to this previous work, the aim of this paper is to explore the use of the barycentric
form in the context of curve design. We first show that rational Bézier curves (1) and barycentric
rational curves (3) are essentially equivalent (Section 2), in the sense that any rational Bézier
curve can be expressed in barycentric form and vice versa. We then discuss the shape editing
possibilities offered by the barycentric form (Section 3), we show how to raise the degree from
n to n + 1 without changing the curve (Section 4), and provide numerical evidence that the
barycentric form is advantageous for curve evaluation (Section 5).

2. Equivalence of Bézier and barycentric form

Let us first recall how to derive the barycentric form for a polynomial p : R → R of degree n
[Berrut and Trefethen, 2004]. Clearly, the Lagrange form of p is

p(t) =
n∑

i=0

n∏
j=0, j ̸=i

t− tj
ti − tj

pi

where pi = p(ti), i = 0, . . . , n. Factoring out the polynomial ℓ(t) =
∏n

j=0(t − tj), we get the
first barycentric form

p(t) = ℓ(t)
n∑

i=0

wi

t− ti
pi,

with the Lagrange weights wi defined as

wi =
n∏

j=0, j ̸=i

1

ti − tj
, i = 0, . . . , n. (4)

Further dividing by the constant function 1, expressed in first barycentric form as 1 = ℓ(t)
∑n

i=0
wi

t−ti
,

and cancelling the common factor ℓ(t), then yields the second barycentric form

p(t) =

∑n
i=0

wi

t−ti
pi∑n

i=0
wi

t−ti

.

To convert the rational Bézier curve in (1) to the barycentric form in (3), it remains to
express the two components x̂(t), ŷ(t) in the numerator of P (t) and its denominator ẑ(t) in the
first barycentric form.

Proposition 1. For any nodes 0 ≤ t0 < t1 < · · · < tn ≤ 1, we can express the rational Bézier
curve (1) with control points Pi and weights αi in barycentric form (3) with interpolation points
Qi = P (ti) and weights βi = (−1)n+iwizi, where zi = ẑ(ti) and wi as in (4).

Proof. Let us first write the denominator of P (t) in first barycentric form as

ẑ(t) =
n∑

i=0

αiB
n
i (t) = ℓ(t)

n∑
i=0

wi

t− ti
zi. (5)

Likewise, the numerator of P (t) can be expressed in first barycentric form as

n∑
i=0

αiB
n
i (t)Pi = ẑ(t)P (t) = ℓ(t)

n∑
i=0

wi

t− ti
ziP (ti). (6)

The statement then follows after dividing (6) by (5), substituting P (ti) = Qi and wizi =
(−1)n+iβi, and cancelling the common factor (−1)nℓ(t).
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Figure 3: Different representations of the quarter circle as a quadratic rational curve: (a)
standard Bézier form with α0 = α2 = 1 (instead of the weights αi we show the Farin points Fi

to visualize the ratios αi/αi+1); (b) corresponding barycentric form (cf. Proposition 1) for t0 = 0,
t1 = 2 −

√
2, t2 = 1; (c) standard barycentric form with β̃0 = β̃2 = 1 after reparameterization

(cf. Proposition 3); (d) corresponding (non-symmetric) Bézier form (cf. Proposition 4); (e)
after sliding the interpolation point Q̃1 to the new position Q̄1 (cf. Proposition 5); (f) as a
cubic rational curve after inserting an additional interpolation point (cf. Proposition 7), in
barycentric and Bézier form. The dots visualize the curve points P (i/16) for i = 0, . . . , 16.

In principle, the nodes ti do not have to be ordered or restricted to the interval [0, 1], as
long as they are distinct; however, in the context of interactive curve design, it seems natural
to make these assumptions. Likewise, it is reasonable to set t0 = 0 and tn = 1, so that Q0 = P0

and Qn = Pn mark the endpoints of the curve.
Under the usual assumption of positive weights αi, which guarantees that ẑ(t) > 0 for all

t ∈ [0, 1], so that the curve is non-singular1, we conclude that the weights βi are positive, too,
because sign(wi) = (−1)n−i, which follows from the observation that the factors of wi in (4)
are negative, if and only if i < j ≤ n. This is in line with a result by Schneider and Werner
[1986, Proposition 8], which implies that the positivity of the βi is a necessary condition for
the non-singularity of the barycentric rational curve in (3).

Example 1. Consider the quadratic rational curve P in Bézier form (1) with control points
P0 = (1, 0), P1 = (1, 1), P2 = (0, 1) and weights α0 = 1, α1 = 1/

√
2, α2 = 1, which describes a

quarter circle (see Figure 3.a). Sampling this curve at the nodes t0 = 0, t1 = 2 −
√

2, t2 = 1
yields the interpolation points Q0 = (1, 0), Q1 = (3/5, 4/5), Q2 = (0, 1), and the weights of the
barycentric form (3) turn out to be β0 = 1 + 1/

√
2, β1 = 5/

√
2, β2 = 1 +

√
2 (see Figure 3.b).

Once a rational curve is represented in barycentric form, we can use a linear rational repa-
rameterization to bring it into standard barycentric form with β0 = βn = 1, very similarly to
how the Bézier representation can be brought into standard form [Patterson, 1985].

Lemma 2. For any λ ∈ (0, 1), consider the linear rational reparameterization φ : [0, 1] → [0, 1],

φ(t) =
(1 − λ)t

λ(1 − t) + (1 − λ)t
. (7)

Let P be the barycentric rational curve (3) with nodes ti, interpolation points Qi, and weights βi

and let P̃ be the barycentric rational curve with nodes t̃i = φ(ti), the same interpolation points
Q̃i = Qi, and weights β̃i = βiλt̃i/ti. Then, P = P̃ ◦ φ.

Proof. Denoting the denominator of φ(t) by δ(t) = λ(1 − t) + (1 − λ)t, we first observe that

t̃i

φ(t) − t̃i
=

φ(ti)

φ(t) − φ(ti)
=

(1−λ)ti
δ(ti)

(1−λ)t
δ(t)

− (1−λ)ti
δ(ti)

=
tiδ(t)

tδ(ti) − tiδ(t)
=

tiδ(t)

λ(t− ti)

1It is actually sufficient to assume α0, αn > 0 and αi ≥ 0 for i = 1, . . . , n− 1.
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for any i = 0, . . . , n. Therefore,

β̃i

φ(t) − t̃i
=

βiλ

ti
· t̃i

φ(t) − t̃i
=

βi

t− ti
δ(t).

After substituting this into the numerator and the denominator of (P̃ ◦ φ)(t) and cancelling
the common factor δ(t) we get (P̃ ◦ φ)(t) = P (t).

Note that β̃0 in Lemma 2 is well-defined, even if t0 = 0, because

lim
t→0

φ(t)

t
= lim

t→0
φ′(t) =

1 − λ

λ
,

so that β̃0 = β0(1 − λ) in that case. Moreover, we observe that sign(β̃i) = sign(βi) for i =
0, . . . , n. Therefore, if the βi are all positive, then so are the new weights β̃i.

Proposition 3. The barycentric rational curve (3) with nodes ti, interpolation points Qi, and
weights βi can be expressed in standard form by first reparameterizing it with φ in (7) for

λ =
β0tn − βnt0

β0(2tn − 1) − βn(2t0 − 1)
(8)

and then dividing all weights β̃i by β̃0, as long as λ ∈ (0, 1).

Proof. According to Lemma 2, the first and the last weight of the reparameterized curve are

β̃0 = β0λ
φ(t0)

t0
=

β0

δ(t0)
λ(1 − λ) and β̃n = βnλ

φ(tn)

tn
=

βn

δ(tn)
λ(1 − λ), (9)

where δ(t) is again the denominator of φ(t). It remains for us to show that the choice of λ
in (8) guarantees β̃0 = β̃n, which is equivalent to β0δ(tn) = βnδ(t0) by (9), so that both weights
are 1 after dividing them by β̃0. But as (8) implies

λβ0(2tn − 1) − λβn(2t0 − 1) = β0tn − βnt0

and further
βnt0 − 2λβnt0 + λβn = β0tn − 2λβ0tn + λβ0,

we get the desired identity after noting that δ(t0) = λ−2λt0 + t0 and δ(tn) = λ−2λtn + tn.

The curve cannot be brought into standard form, if λ in (8) is outside the open interval
(0, 1), because φ is singular and no longer a monotonic reparameterization of [0, 1] in that case.
However, if t0 = 0, tn = 1, and all βi are positive, then λ simplifies to λ = β0/(β0 + βn) ∈ (0, 1)
and β̃0 = β̃n = β0βn/(β0 + βn) > 0.

Example 2. Applying Proposition 3 to the barycentric rational curve P from Example 1
(see Figure 3.b), it turns out that the quarter circle can be described in standard barycentric
form with nodes t̃0 = 0, t̃1 = 2/3, t̃2 = 1, interpolation points Q̃0 = (1, 0), Q̃1 = (3/5, 4/5),
Q̃2 = (0, 1), and weights β̃0 = 1, β̃1 = 5/3, β̃2 = 1 (see Figure 3.c).

A natural question to ask at this point is: how does one get back from barycentric to Bézier
form? To this end, it helps to recall that P̂i = (αiPi, αi) and to let Q̂i = (ziQi, zi), so that the
assignments Qi = P (ti) and zi = ẑ(ti) for i = 0, . . . , n in the statement of Proposition 1 can be
written compactly as Q̂ = BP̂ , where2

B =

Bn
0 (t0) · · · Bn

n(t0)
...

. . .
...

Bn
0 (tn) · · · Bn

n(tn)

 , P̂ =

P̂0
...

P̂n

 , Q̂ =

Q̂0
...

Q̂n

 . (10)

2The observant reader may have already noticed that throughout this paper we write points (in R2 and R3)
as row vectors, so as to avoid excessive use of the transposition operator and to be able to conveniently stack
them into matrices, like P̂ , Q̂ ∈ R(n+1)×3.
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Proposition 4. The barycentric rational curve (3) with nodes ti, interpolation points Qi, and
weights βi can be expressed in Bézier form (1) with control points Pi = (x̂i, ŷi)/ẑi and weights
αi = ẑi, where the vector P̂ of points P̂i = (αiPi, αi) = (x̂i, ŷi, ẑi) is defined as P̂ = B−1Q̂ and
Q̂ is the vector of points Q̂i = (ziQi, zi) with zi = (−1)n+iβi/wi and wi as in (4).

Proof. First recall that the Bernstein–Vandermonde matrix B in (10) is non-singular, because
the Bernstein basis is a Chebyshev system. The assertion then follows immediately by applying
Proposition 1 to the rational Bézier curve with the stated control points Pi and weights αi and
verifying that it gives back the interpolation points Qi and weights βi.

Note that P̂ = B−1Q̂ can be computed fast and accurately with O(n2) time complex-
ity [Marco and Mart́ınez, 2007]. If the last coordinate αi = ẑi of the homogeneous control point
P̂i happens to vanish for some i, it means that the given barycentric rational curve cannot be
written as a classical rational Bézier curve with control points in R2. Instead, the control point
Pi needs to be replaced by the control vector αiPi = (x̂i, ŷi) ∈ R2, representing an infinite
control point in this case [Piegl, 1987; Farin, 2001].

Example 3. Using Proposition 4 to convert the barycentric rational curve P̃ in standard form
from Example 2 (see Figure 3.c) back to Bézier form, we find that the quadratic rational
Bézier curve with control points P̃0 = (1, 0), P̃1 = (1, 1), P̃2 = (0, 1) and weights α̃0 = 2/3,
α̃1 = 1/3, α̃2 = 1/3 also describes a quarter circle (see Figure 3.d). Bringing these weights into
standard form, we return to the rational Bézier curve P that we started with in Example 1 (see
Figure 3.a).

3. Shape editing using the barycentric form

Once a rational curve is given in barycentric form (3), several new options arise for manipulating
the curve by modifying the different parameters of the barycentric form: the nodes ti, the
interpolation points Qi, and the weights βi.

Changing one of the nodes, say tk, in isolation, while keeping the Qi and the βi fixed, has a
rather unpredictable effect. However, it is possible to preserve the shape (and the parameter-
ization) of the curve by simultaneously adapting the corresponding Qk and all βi, so that the
effect amounts to “sliding” Qk along the curve. This can be achieved by first using Proposi-
tion 4 to express the curve in Bézier form and then applying Proposition 1 with the modified
nodes to get back to the barycentric form. However, it turns out that we do not have to carry
out these conversions explicitly, as the new interpolation points and weights can be expressed
directly in terms of the given parameters of the barycentric form.

Proposition 5. Suppose we change the node tk for some k ∈ {0, . . . , n} to some new value
t̄k /∈ {t0, . . . , tn} and keep the other nodes fixed, that is, we let t̄i = ti for i ̸= k. The barycentric
rational curve (3) with nodes ti, interpolation points Qi, and weights βi can then be expressed
alternatively in terms of the nodes t̄i, the interpolation points Q̄k = P (t̄k) and Q̄i = Qi for
i ̸= k, and the weights

β̄k =
n∑

i=0

(−1)n+k+i t̄k − tk
t̄k − ti

βi, β̄i =
ti − tk
ti − t̄k

βi, i ̸= k. (11)

Proof. To prove this statement, we stick to the idea sketched out above. After converting the
given curve to Bézier form, it follows directly from Proposition 1 that the new interpolation
points are Q̄i = P (t̄i), which simplifies to Q̄i = P (ti) = Qi for i ̸= k. Moreover, we know that
the given weights satisfy βi = (−1)n+iwiẑ(ti), where wi is defined in (4) and the denominator
polynomial ẑ can be written, independently of the Bézier form, in first barycentric form as
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ẑ(t) = ℓ(t)
∑n

i=0 (−1)i βi

t−ti
. Likewise, the new weights satisfy β̄i = (−1)n+iw̄iẑ(t̄i), where w̄i =∏n

j=0, j ̸=i
1

t̄i−t̄j
. If i ̸= k, then this expression simplifies to

β̄i = (−1)n+i 1

t̄i − t̄k

n∏
j=0, j ̸=i,k

1

t̄i − t̄j
ẑ(t̄i) = (−1)n+i 1

ti − t̄k

n∏
j=0, j ̸=i,k

1

ti − tj
ẑ(ti) =

ti − tk
ti − t̄k

βi,

because t̄i = ti for i ̸= k. For the remaining weight β̄k, note that ℓ(t̄k) =
∏n

j=0(t̄k − tj) =
(t̄k − tk)/w̄k, hence

β̄k = (−1)n+kw̄kℓ(t̄k)
n∑

i=0

(−1)i
βi

t̄k − ti
=

n∑
i=0

(−1)n+k+i t̄k − tk
t̄k − ti

βi.

In an interactive application, this “sliding” of Qk can be realized, for example, by letting
the user click on the desired interpolation point, while holding the ‘shift’ key (to distinguish the
action from a displacement of Qk; see below), and translating the subsequent mouse movement
(left/right or up/down) into an increase or decrease of tk until the mouse button is released.
Note that the time complexity for updating βk is O(n), O(1) for updating each of the other
βi, and O(n) for updating Qk (see Section 5), hence O(n) overall, which is much more efficient
than computing the conversion to Bézier form and back.

For the reasons pointed out in Section 2, it seems reasonable to prevent sliding the endpoints
Q0 and Qn, that is, to exclude the cases k = 0 and k = n in Proposition 5, and to restrict t̄k to
the open interval (tk−1, tk+1), so that Q̄k remains between its neighbours Qk−1 and Qk+1 along
the curve. In this case, it follows immediately from (11) that sign(β̄i) = sign(βi) for i ̸= k,
hence the positivity of the weights βi carries over to the new weights β̄i. For β̄k, this is not
obvious from (11), but implied by the fact that changing tk does not change the curve, so that
the non-singularity of the curve still guarantees that all βi have the same sign [Schneider and
Werner, 1986].

Example 4. Applying Proposition 5 to the barycentric rational curve P̃ in standard form from
Example 2 (see Figure 3.c) and changing t̃1 = 2/3 to t̄1 = 1/3, thus sliding Q1 = (3/5, 4/5) to
Q̄1 = (12/13, 5/13), we find that the quarter circle can also be described in barycentric form
with nodes t̄0 = 0, t̄1 = 1/3, t̄2 = 1, interpolation points Q̄0 = (1, 0), Q̄1 = (12/13, 5/13),
Q̄2 = (0, 1), and weights β̄0 = 2, β̄1 = 13/6, β̄2 = 1/2 (see Figure 3.e).

The most direct control over the shape of the curve is given by displacing one of the interpo-
lation points, say Qk, while keeping all other parameters fixed. By the interpolation property of
the barycentric form, this will force the curve to pass through the new position of Qk at tk (see
Figure 2.b). Compared to moving a Bézier control point Pk, it should be noted that the basis
function (−1)k βk

t−tk

/∑n
i=0 (−1)i βi

t−ti
that corresponds to Qk is neither non-negative nor as nicely

“bell-shaped” as the basis function αkB
n
k (t)

/∑n
i=0 αiB

n
i (t) that corresponds to Pk. Hence, for

large displacements, the shape may change less intuitively as it does in the case of editing the
control polygon. However, while the general shape of the curve is more easily controlled with
the Bézier control points Pi, changing the interpolation points Qi, combined with the “sliding”
procedure outlined above and inserting points with ease (see Section 4) provides a useful tool
for “micro-editing” the curve shape. For example, it can be used to “snap” the curve to some
point Q that must be interpolated exactly and the interpolation property guarantees that Q
remains a point on the curve during subsequent editing operations, as long as Q is identical to
one of the Qi.
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(a) (b) (c)

Figure 4: Plots of (a) the basis functions Ci(t) = (−1)i βi

t−ti

/∑n
j=0 (−1)j

βj

t−tj
of a barycentric

rational curve of degree n = 9 with equidistant nodes ti = i/n and weights (β0, . . . , βn) =
(1, 8, 3, 2, 5, 6, 2, 5, 8, 1), (b) the denominator D(t), and (c) the function Sk(t) for k = 3. The
horizontal lines represent M∗ and M∗.

It remains for us to discuss what happens to the curve if we change one of the weights, say
βk, and it turns out that we can use this parameter to modify the “flatness” of the curve at
Qk. Indeed, Schneider and Werner [1986] show that the derivative of P at Qk = P (tk) is

P ′(tk) =

∑n
i=0, i ̸=k (−1)k+i+1 βi

tk−ti
(Qk −Qi)

βk

.

As the numerator, which determines the direction of the tangent at Qk, does not depend on
βk, which in turn appears only in the denominator, it follows that βk controls the length of
the tangent, but not its direction. Therefore, decreasing βk “flattens” the curve locally at Qk,
while increasing βk has the effect of letting the curve bend more tightly at Qk (see Figure 2.c
and Figure 5). However, some limits on the possible values of βk need to be respected, if we
want to guarantee that the curve remains non-singular.

Proposition 6. Consider a non-singular barycentric rational curve (3) with nodes 0 = t0 <
t1 < · · · < tn = 1, interpolation points Qi, and weights βi > 0 and suppose we change the
weight βk for some k ∈ {0, . . . , n} to some new value β̄k. Then the modified curve P̄ remains
non-singular as long as β̄k ∈ (M⋆,M

⋆), where

M⋆ = max{. . . ,Mk−2,Mk,Mk+2, . . . }, M⋆ = min{. . . ,Mk−3,Mk−1,Mk+1,Mk+3, . . . },

with

Mk+i =

{
max{Sk(t) : t ∈ (tk+i+i⋆ , tk+i+i⋆)}, i even,

min{Sk(t) : t ∈ (tk+i+i⋆ , tk+i+i⋆)}, i odd,
i⋆ =

{
−1, i ≤ 0,

0, i > 0,
i⋆ =

{
0, i < 0,

1, i ≥ 0,

(12)

and

Sk(t) =
n∑

i=0 i ̸=k

(−1)k+i+1 t− tk
t− ti

βi.

Proof. First recall from (5) that the denominator D(t) =
∑n

i=0 (−1)i βi

t−ti
of a non-singular

barycentric rational curve with positive weights βi (see Figure 4.b) satisfies

(−1)nℓ(t)D(t) = ẑ(t) > 0, t ∈ [0, 1], (13)

where ℓ(t) =
∏n

i=0(t− ti). Next observe that the denominator

D̄(t) = (−1)k
β̄k

t− tk
+

n∑
i=0, i ̸=k

(−1)i
βi

t− ti

8
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Q1

(a)

Q0 Q2 Q0

Q1

Q2

(b)

Q0

Q1

Q2

(c)

Q1

(d)

Q0 Q2

Q1

(e)

Q0 Q2

Figure 5: The effect of changing the central weight of a quadratic rational curve P in barycentric
form (3): (a) β1 = 4; (b) β1 = 2; (c) β1 = 1; (d) β1 = 1/2; (e) β1 = 1/4. The direction of the
derivative P ′(t1) at Q1 is fixed, but its length is inverse proportional to β1. The dots visualize
the curve points P (i/16) for i = 0, . . . , 16.

of the modified curve P̄ vanishes at t̄, if and only if β̄k = Sk(t̄). By the interpolation property
of barycentric rational curves, it is clear that t̄ /∈ {t0, . . . , tn}. Therefore, P̄ is non-singular
for t ∈ [0, 1], as long as β̄k is not in the image of I = [0, 1] \ {t0, . . . , tn} under Sk. To better
understand the behaviour of Sk, note that

Sk(t) = (−1)k+1(t− tk)D(t) + βk

and assume that t ∈ (tj, tj+1) for some j ∈ {0, . . . , n−1}. Since (−1)n−jℓ(t) is clearly positive, it
follows from (13) that (−1)jD(t) is positive too, with limt→tj (−1)jD(t) = limt→tj+1

(−1)jD(t) =
+∞. Therefore, Sk(t)−βk is positive, if j ≥ k and j+k is odd, or if j < k and j+k is even, and
negative otherwise, converging to +∞ or −∞ as t approaches tj or tj+1, except at tk, because
Sk(tk) = 0. Consequently, the image of (tj, tj+1) under Sk is

Sk[(tj, tj+1)] =

{
[Mj+1,+∞),

(−∞,Mj+1],
if j < k − 1 and j + k is

{
even,

odd,

Sk[(tj, tj+1)] =

{
[Mj,+∞),

(−∞,Mj],
if j ≥ k + 1 and j + k is

{
odd,

even,

and
Sk[(tk−1, tk+1)] = (−∞,Mk],

for the Mj in (12) (see Figure 4.c). Combining these images, we find that Sk[I] = (−∞,M⋆] ∪
[M⋆,+∞), which, together with the considerations above, shows that the stated condition for
β̄k guarantees P̄ to be non-singular.

Note that M⋆ in Proposition 6 is always non-negative, because Sk(tk) = 0 and thus M⋆ ≥
Mk ≥ 0, which is in line with our expectation that β̄k should be positive, just like βk, in order
for P̄ to be non-singular. In general, it does not seem feasible to determine the bounds M⋆ and
M⋆ analytically, but they can be computed numerically by first finding the roots of S ′

k over the
relevant intervals with Newton’s method, using, for example, the midpoint of the interval as
initial value, and then evaluating Sk at these roots to get the Mj in (12).

Example 5. The derivative of the quadratic barycentric rational curve P with nodes t0 = 0,
t1 = 1/2, t2 = 1, interpolation points Q0 = (−1, 0), Q1 = (0, 1), Q2 = (1, 0), and weights
β0 = β1 = β2 = 1 at t1 is P ′(t1) = (4, 0) (see Figure 5.c). Increasing the weight β1 to 2 or 4
shortens the derivative by a factor of 1/2 or 1/4, respectively (see Figure 5.a,b), while decreasing
β1 to 1/2 or 1/4 extends the derivative by a factor of 2 or 4, respectively (see Figures 5.d,e).
In this example, the curve is well-defined for all β1 > 0. Instead, if we want to modify β0, then
we must ensure that β0 ∈ (0, 9).

9
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4. Point insertion and degree elevation

A common tool for increasing the flexibility of a rational Bézier curve is degree elevation,
which can be used to represent a given curve of degree n as a curve of degree n + 1 without
changing its shape. This increases the number of control points and weights by one and hence
gives the user more control to model the desired shape. The equivalent of degree elevation in
the barycentric form simply amounts to adding an interpolation point Q⋆ = P (t⋆) for some
t⋆ ∈ [0, 1] \ {t0, . . . , tn}, adapting the weights βi, and computing the appropriate new weight
for Q⋆.

Proposition 7. Let k ∈ {0, . . . , n + 1} and t⋆ ∈ (tk−1, tk), where t−1 = 0 and tn+1 = 1.
The barycentric rational curve P of degree n in (3) with nodes ti, interpolation points Qi, and
weights βi can then be expressed alternatively as a barycentric rational curve P̆ of degree n + 1
with parameters

t̆i =


ti,

t⋆,

ti−1,

Q̆i =


Qi,

Q⋆ = P (t⋆),

Qi−1,

β̆i =


βi

t⋆−ti
,∑n

i=0 (−1)n+k+i βi

ti−t⋆
,

βi−1

ti−1−t⋆
,

if


i < k,

i = k,

i > k.

(14)

Proof. As in the proof of Proposition 5, we first use Proposition 4 to convert P to Bézier form
and then conclude from Proposition 1 that the given weights satisfy βi = (−1)n+iwiẑ(ti), where
wi is defined in (4) and ẑ(t) = ℓ(t)

∑n
i=0 (−1)n βi

t−ti
. Likewise, applying Proposition 1 to the

nodes t̆0, . . . , t̆n+1, it follows that Q̆i = P (t̆i), which simplifies to what is stated in (14), and
that β̆i = (−1)n+1+iw̆iẑ(t̆i), where w̆i =

∏n+1
j=0, j ̸=i

1
t̆i−t̆j

. If i < k, then this expression simplifies

to

β̆i = (−1)n+1+i 1

t̆i − t̆k

n+1∏
j=0, j ̸=i,k

1

t̆i − t̆j
ẑ(t̆i) = (−1)n+1+i 1

ti − t⋆

n∏
j=0, j ̸=i

1

ti − tj
ẑ(ti) =

βi

t⋆ − ti
,

because t̆i = ti for i < k and t̆i = ti−1 for i > k, and similarly to

β̆i = (−1)n+1+i 1

t̆i − t̆k

n+1∏
j=0, j ̸=i,k

1

t̆i − t̆j
ẑ(t̆i) = (−1)n+1+i 1

ti−1 − t⋆

n∏
j=0, j ̸=i

1

ti−1 − tj
ẑ(ti−1) =

βi−1

ti−1 − t⋆
,

if i > k. For the remaining weight β̆k, note that ℓ(t̆k) =
∏n

j=0(t̆k − tj) = 1/w̆k, hence

β̆k = (−1)n+1+kw̆kℓ(t̆k)
n∑

i=0

(−1)i
βi

t̆k − ti
=

n∑
i=0

(−1)n+k+i βi

ti − t⋆
.

At this point, one may ask: what happens if we convert the barycentric rational curve
P̆ of degree n + 1 with the parameters in (14) to Bézier form? But as P̆ is just a different
representation of the same curve P , its Bézier form must simply be the degree-elevated Bézier
form of P . Indeed, since degree elevation does not change the denominator polynomial ẑ, this
fact can also be observed by applying Proposition 1 to the degree-elevated Bézier form of P
and noticing that this gives the parameters in (14).

10
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Example 6. Adding the point Q⋆ = P (1/3) to the quadratic barycentric rational curve P̄
from Example 4 (see Figure 3.e), it follows from Proposition 7 that the quarter circle can be
described as a cubic barycentric rational curve with nodes t̆0 = 0, t̆1 = 1/3, t̆2 = 2/3, t̆3 = 1,
interpolation points Q̆0 = (1, 0), Q̆1 = (12/13, 5/13), Q̆2 = (3/5, 4/5), Q̆3 = (0, 1), and weights
β̆0 = 3, β̆1 = 13/2, β̆2 = 5, β̆3 = 3/2 (see Figure 3.f). Applying Proposition 4 to this curve, we
find that its Bézier form is given by the control points P̆0 = (1, 0), P̆1 = (1, 1/2), P̆2 = (2/3, 1),
P̆3 = (0, 1) and the weights ᾰ0 = 2/3, ᾰ1 = 4/9, ᾰ2 = 1/3, ᾰ3 = 1/3 (see Figure 3.f), which is
just the degree-elevated quadratic rational Bézier curve from Example 3 (see Figure 3.d).

5. Performance of the barycentric form for curve evaluation

The classical way to evaluate a rational Bézier curve (1) at some parameter t ∈ [0, 1] is by
applying the de Casteljau algorithm to the numerator and the denominator of P (t) and dividing
through, which has time complexity O(n2). The rational de Casteljau algorithm [Farin, 1983]
provides a more robust, but less efficient alternative with the same time complexity. A recent
paper by Woźny and Chudy [2020] presents a novel evaluation procedure for rational Bézier
curves with a nice geometric interpretation. Like the de Casteljau algorithm, it is based on
robust convex combinations, but it has a favourable linear time complexity. Yet another option
is to use Proposition 1 to convert the curve into the barycentric form in (3) and to evaluate
the latter. This can clearly be done in linear time, too, by first computing the sums in the
numerator and the denominator and then dividing through (see Algorithm 1).

Algorithm 1 Evaluation of P using the barycentric rational form

Input: nodes t0 . . . , tn, interpolation points Q0, . . . , Qn, and weights β0, . . . , βn of P and pa-
rameter t

Output: P (t)
N := 0
D := 0
σ := 1
for i from 0 to n do

d := t− ti
if d = 0 then

return Qi

a := σβi/d
N := N + aQi

D := D + a
σ := −σ

return N/D

To compare the efficiency of these three algorithms (classical de Casteljau, linear-time geo-
metric, barycentric), we implemented them in C++ on a Ubuntu 20.04.2 LTS laptop with 1.8
GHz Intel Core i7-10510U processor and 16 GB RAM. The time complexities of the algorithms
are confirmed by the plots in Figure 6.a, which show the average running times for evaluating a
rational Bézier curve of degree n with random control points Pi ∈ [−1, 1]2 and random weights
αi ∈ [0.01, 10] at 106 random parameters t for n = 3, 5, 10, 20, . . . , 80. Regardless of n, the
evaluation in barycentric form is the fastest, even though the running time includes the time
for pre-computing the interpolation points Qi (with Woźny and Chudy’s linear-time algorithm)
and the weights βi (with the polynomial de Casteljau algorithm) for equidistant nodes ti = i/n
and Lagrange weights wi = (−1)n−i(n

i

)
nn/n! [Berrut and Trefethen, 2004]. Compared to the

106 evaluations, this pre-computation is negligible, but for fewer evaluations it is not. This
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Figure 6: Comparison of different algorithms for evaluating a rational Bézier curve: (a) running
times (in seconds) for 106 evaluations of curves of different degree n; (b) running times (in
milliseconds) for M evaluations of a curve of degree 3.

effect can be seen in Figure 6.b, which reports the running times for evaluating a cubic rational
Bézier curve at M = 100, 200, . . . , 1000 random parameters t ∈ [0, 1]. While the linear-time
algorithm is the fastest for small M , the pre-computation needed for the barycentric evaluation
pays off for large M , with the break-even at about M = 300 evaluations.

While we use equidistant nodes in this comparison, we should point out that this may lead
to numerical inaccuracies for n ≥ 50, due to the large variance of the wi, which carries over
to the βi. Instead, stable results can be obtained by using Chebyshev points of the second
kind as nodes, that is, ti = (1 − cos iπ

n
)/2, because the corresponding Lagrange weights satisfy

|w0| = |wn| = |wi|/2 for i = 1, . . . , n− 1 [Berrut and Trefethen, 2004].

6. Conclusion

In this paper, we explored the use of barycentric rational curves in the context of shape design,
and we studied their properties. Converting a given rational Bézier curve to barycentric form
is simple and comes with several advantages. On the one hand, the barycentric form offers
new tools for controlling the shape of the curve that are complementary to the classical way of
manipulating rational Bézier curves. As the barycentric form provides neither a convex hull,
nor a vanishing diminishing property, these new tools may be less intuitive, but we believe that
they are still useful, at least for “micro-editing”. After a modification in the barycentric form,
the curve can easily be transformed back into Bézier form. On the other hand, the barycentric
form is very efficient to evaluate in linear time.

Analogously to rational Bézier curves, the barycentric rational curve P in (3) can be seen
as the projection of the polynomial curve P̂ that interpolates the homogeneous interpolation
points Q̂i = (ziQi, zi) at the nodes ti, where zi = (−1)n+iβi/wi, into the ẑ = 1 plane. In
this homogeneous setting, the proposed editing operations can be understood as follows: (1)
“sliding” Qk along P is equivalent to “sliding” Q̂k along P̂ , and as the modification of tk entails
a change of the wi, the βi need to be updated for i ̸= k as in Proposition 5, so that the
corresponding zi and Q̂i remain the same; (2) moving Qk is like moving Q̂k in the ẑ = zk plane;
(3) modifying βk is tantamount to displacing Q̂k along the line through Q̂k and the origin. The
larger βk, the further Q̂k is from the origin, and the more the projected curve P bends at Qk,

12



New shape control tools for rational Bézier curve design

very similarly to how increasing the weight αi pulls P towards the control point Pk in the case
of rational Bézier curves.

For the important class of non-singular rational curves, there is an interesting difference
between the Bézier and the barycentric form. While the positivity of the αi is sufficient, the
positivity of the βi is only necessary for the non-singularity of the curve. Consequently, the set
of all Bézier curves with positive αi does not contain all non-singular curves, while the set of
all barycentric rational curves with positive βi does, but also contains singular curves. In both
cases, additional non-linear constraints are needed to fix this (cf. Proposition 6).

Another difference is that the barycentric form can describe curves that cannot be repre-
sented in Bézier form, at least not with the same degree. For example, a semi-circle can be
modelled as a quadratic rational curve in barycentric form (see Figure 5.c), but not in Bézier
form without using control vectors, and likewise for a full circle as a quartic rational curve.
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